Abstract:We report 10-ps correlated photon pair generation in periodically-poled reverse-proton-exchange lithium niobate waveguides with integrated mode demultiplexer at a wavelength of 1.5-μm and a clock of 10 GHz. Using superconducting single photon detectors, we observed a coincidence to accidental count ratio (CAR) as high as 4000. The developed photon-pair source may find broad application in quantum information systems as well as quantum entanglement experiments.
Because of the poor lighting conditions at night time, visible images are often fused with corresponding infrared (IR) images for context enhancement of the scenes in night vision. In this paper, we present a novel night-vision context enhancement algorithm through IR and visible image fusion with the guided filter. First, to enhance the visibility of poorly illuminated details in the visible image before the fusion, an adaptive enhancement method is developed by incorporating the processes of dynamic range compression and contrast restoration based on the guided filter. Then, a hybrid multi-scale decomposition based on the guided filter is introduced to inject the IR image information into the visible image through a multi-scale fusion approach. Moreover, a perceptual-based regularization parameter selection method is used to determine the relative amount of the injected IR spectral features by comparing the perceptual saliency of the IR and visible image information. This fusion method can successfully transfer the important IR image information into the fused image, and simultaneously preserve the details and background scenery in the input visible image. Experimental results show that the proposed algorithm is able to achieve better context enhancement results in night vision.
In this letter, we report an experimental realization of distributing entangled photon pairs over 100 km of dispersion-shifted fiber. In the experiment, we used a periodically poled lithium niobate waveguide to generate the time-energy entanglement and superconducting single-photon detectors to detect the photon pairs after 100 km. We also demonstrate that the distributed photon pairs can still be useful for quantum key distribution and other quantum communication tasks.
We propose several techniques to modulate the local amplitude of quasi-phase-matched (QPM) interactions in periodically poled lithium niobate waveguides and demonstrate apodization by using each of these techniques. When the hard edges are removed in the spatial profile of the nonlinear coupling, the sidelobes of the frequency tuning curves are suppressed by 13 dB or more, compared with a uniform grating, consistent with theoretical predictions. The sidelobe-suppressed gratings are useful for frequency conversion devices in optical communication systems to minimize interchannel cross talk, while the amplitude modulation techniques in general have potential uses in applications that require altering the tuning curve shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.