The yield potential ( Y p ) of a grain crop is the seed mass per unit ground area obtained under optimum growing conditions without weeds, pests and diseases. It is determined by the product of the available light energy and by the genetically determined properties: efficiency of light capture ( e i ), the efficiency of conversion of the intercepted light into biomass ( e c ) and the proportion of biomass partitioned into grain ( h ). Plant breeding brings h and e i close to their theoretical maxima, leaving e c , primarily determined by photosynthesis, as the only remaining major prospect for improving Y p . Leaf photosynthetic rate, however, is poorly correlated with yield when different genotypes of a crop species are compared. This led to the viewpoint that improvement of leaf photosynthesis has little value for improving Y p . By contrast, the many recent experiments that compare the growth of a genotype in current and future projected elevated [CO 2 ] environments show that increase in leaf photosynthesis is closely associated with similar increases in yield. Are there opportunities to achieve similar increases by genetic manipulation? Six potential routes of increasing e c by improving photosynthetic efficiency were explored, ranging from altered canopy architecture to improved regeneration of the acceptor molecule for CO 2 . Collectively, these changes could improve e c and, therefore, Y p by c . 50%. Because some changes could be achieved by transgenic technology, the time of the development of commercial cultivars could be considerably less than by conventional breeding and potentially, within 10-15 years.
Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented.
Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers new knowledge and resources to accelerate sugarcane improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.