Long alkyl-chain capping ligands are indispensable for preparing stable colloidal quantum dots. However, its insulating feature blocks efficient carrier transport among QDs, leading to inferior performance in light-emitting diodes (LEDs). The trade-off between conductivity and colloidal stability of QDs has now been overcome. Methylamine lead bromide (MAPbBr ) QDs with a conjugated alkyl-amine, 3-phenyl-2-propen-1-amine (PPA), as ligands were prepared. Owing to electron cloud overlapping and the delocalization effect of conjugated molecules, the conductivity and carrier mobility of PPA-QDs films increased almost 22 times over that of OA-QD films without compromising colloidal stability and photoluminescence. PPA-QDs LEDs exhibit a maximum current efficiency of 9.08 cd A , which is 8 times of that of OA-QDs LEDs (1.14 cd A ). This work provides critical solution for the poor conductivity of QDs in applications of energy-related devices.
Take two: α‐Diazocarbonyl compounds display a diverse pattern of reactivity upon palladium‐catalyzed reaction with esters. Esters bearing an alkynyl group on the carbonyl carbon atom lead to two different CC bonds at the same carbon atom in a single operation through decarboxylation and migratory insertion, whereas aromatic and benzylic acid derivatives afford aromatic and benzylic esters bearing an O‐substituted quaternary carbon center.
Many groups have explored the scope of the palladium-based cyclization of propargylic compounds since Tsuji's first report in 1985. Through the proper positioning of an internal nucleophilic center and the judicious selection of an appropriate external nucleophile, the synthetic chemist can effectively assert control over the course of the reaction and its products. However, initial investigations were very limited: only heterocyclic compounds were originally synthesized. We have found the palladium-catalyzed cyclization of propargylic compounds to be a very efficient method for producing both carbocyclic and heterocyclic compounds. In this Account, we discuss the cyclization reactions of functionalized propargylic compounds with a variety of nucleophiles that we have developed over the past few years. We also review similar reactions reported by other groups. We focus here on the cyclization of functionalized propargylic compounds containing a carbon nucleophilic center that is in close proximity to the propargylic moiety. We conducted a detailed investigation of their cyclizations with carbon nucleophiles, with nitrogen nucleophiles, with oxygen nucleophiles, and without nucleophiles. We have developed several efficient and useful methods for the synthesis of indenes, naphthalenes, polycycles, and spirocyclic compounds. All of these reactions proceed satisfactorily under very mild conditions; high regio- and stereoselectivity have been observed as well. In the course of our studies, we provided the first demonstration of a novel tandem C-H activation/bis-cyclization reaction of propargylic compounds with terminal alkynes. In addition, we used external nucleophiles to investigate the cyclization of functionalized propargylic compounds that bear an unsaturated carbon-carbon or carbon-heteroatom bond. We presented the first report of the use of external nucleophiles to initiate a novel cyclization of functionalized propargylic compounds containing an electrophile. This revelation provided a fresh perspective through the discovery of a new type of domino cyclization of propargylic compounds. Metal-catalyzed cyclization of propargylic compounds can provide indenes, cyclopentanones, cyclic carbonates, benzofurans, and a range of other cyclic molecules. A thorough understanding of the mechanisms involved in this class of reaction affords exceptional synthetic control, as shown here by our development of efficient procedures and reagents for palladium-catalyzed propargylic cyclizations.
An efficient catalytic decarboxylative acylation of unactivated sp(2) (alkenyl) C-H bonds has been developed. Various substituted α-oxocarboxylic acids with different electronic properties react under mild conditions to afford a diverse range of β-acyl enamide products in good yields. The reaction is proposed to proceed via a cyclic vinylpalladium intermediate, facilitating the decarboxylative dehydrogenative process with enamide coupling partners.
A series of fluorinated 4H-3,1-benzoxazines and iminoisobenzofurans have been synthesized through the electrophilic fluorocyclization of olefinic amides. This methodology is highlighted by its mild conditions, wide substrate scope, and good functional group tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.