In this Letter we study implications of the possible excess of 21-cm line global signal at the epoch of cosmic dawn on the evolutions of a class of dynamically interacting dark energy (IDE) models. We firstly summarize two dynamical mechanisms in which different background evolutions can exert considerable effects on the 21-cm line global signal. One of them is the change in decoupling time of Compton scattering heating, the other stems from the direct change of optical depth due to the different expansion rate of the Universe. After that, we investigate the influence of linear IDE models on 21-cm line signals and find that under the current observational constraints, it is difficult to yield a sufficiently strong 21-cm line signal to be consistent with the results of Experiment to Detect the Global Epoch of reionization Signature (EDGES) since only the optical depth could be effectively changed in these models. Accordingly, this implies us to construct a background evolution which could fulfill the reasonable change of optical depth and Compton heating decoupling time at the same moment by introducing an early dark energy dominated stage into the evolution governed by the IDE models. The comparison with astronomical observations indicate that this scenario could only alleviate, but not complete eliminate, the tension between EDGES and other cosmological surveys.PACS numbers: 98.80.Es, 95.36.+d, 95.36.+x
We calculate the deflection angle, as well as the positions and magnifications of the lensed images, in the case of covariant f(T) gravity. We first extract the spherically symmetric solutions for both the pure-tetrad and the covariant formulation of the theory, since considering spherical solutions the extension to the latter is crucial, in order for the results not to suffer from frame-dependent artifacts.
Applying the weak-field, perturbative approximation we extract the deviations of the solutions comparing to General Relativity. Furthermore, we calculate the deflection angle and then the differences of the positions and magnifications in the lensing framework. This effect of consistent f(T) gravity on the lensing features can serve as an observable signature in the realistic cases where f(T) is expected to deviate only slightly from General Relativity, since lensing scales in general are not restricted as in the case of Solar System data, and therefore deviations from General Relativity could be observed more easily.
We consider the effective field theory formulation of torsional gravity in a cosmological framework to alter the background evolution. Then we use the latest H
0 measurement from the SH0ES Team, as well as observational Hubble data from cosmic chronometer and radial baryon acoustic oscillations, and we reconstruct the f(T) form in a model-independent way by applying Gaussian processes. Since the special square-root term does not affect the evolution at the background level, we finally summarize a family of functions that can produce the background evolution required by the data. Lastly, performing a fitting using polynomial functions and implementing the Bayesian information criterion, we find an analytic expression that may describe the cosmological evolution in great agreement with observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.