BackgroundBoth type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are common age-associated disorders and T2DM patients show an increased risk to suffer from AD, however, there is currently no marker to identify who in T2DM populations will develop AD. Since glycogen synthase kinase-3β (GSK-3β) activity, ApoE genotypes and olfactory function are involved in both T2DM and AD pathogenesis, we investigate whether alterations of these factors can identify cognitive impairment in T2DM patients.MethodsThe cognitive ability was evaluated using Minimum Mental State Examination (MMSE) and Clinical Dementia Rating (CDR), and the mild cognitive impairment (MCI) was diagnosed by Petersen's criteria. GSK-3β activity in platelet, ApoE genotypes in leucocytes and the olfactory function were detected by Western/dot blotting, the amplification refractory mutation system (ARMS) PCR and the Connecticut Chemosensory Clinical Research Center (CCCRC) test, respectively. The odds ratio (OR) and 95% confidence intervals (95% CI) of the biomarkers for MCI diagnosis were calculated by logistic regression. The diagnostic capability of the biomarkers was evaluated by receiver operating characteristics (ROC) analyses.FindingsWe recruited 694 T2DM patients from Jan. 2012 to May. 2015 in 5 hospitals (Wuhan), and 646 of them met the inclusion criteria and were included in this study. 345 patients in 2 hospitals were assigned to the training set, and 301 patients in another 3 hospitals assigned to the validation set. Patients in each set were randomly divided into two groups: T2DM without MCI (termed T2DM-nMCI) or with MCI (termed T2DM-MCI). There were no significant differences for sex, T2DM years, hypertension, hyperlipidemia, coronary disease, complications, insulin treatment, HbA1c, ApoE ε2, ApoE ε3, tGSK3β and pS9GSK3β between the two groups. Compared with the T2DM-nMCI group, T2DM-MCI group showed lower MMSE score with older age, ApoE ε4 allele, higher olfactory score and higher rGSK-3β (ratio of total GSK-3β to Ser9-phosphorylated GSK-3β) in the training set and the validation set. The OR values of age, ApoE ε4 gene, olfactory score and rGSK-3β were 1.09, 2.09, 1.51, 10.08 in the training set, and 1.06, 2.67, 1.47, 7.19 in the validation set, respectively. The diagnostic accuracy of age, ApoE ε4 gene, olfactory score and rGSK-3β were 0.76, 0.72, 0.66, 0.79 in the training set, and 0.70, 0.68, 0.73, 0.79 in the validation set, respectively. These four combined biomarkers had the area under the curve (AUC) of 82% and 86%, diagnostic accuracy of 83% and 81% in the training set and the validation set, respectively.InterpretationAging, activation of peripheral circulating GSK-3β, expression of ApoE ε4 and increase of olfactory score are diagnostic for the mild cognitive impairment in T2DM patients, and combination of these biomarkers can improve the diagnostic accuracy.
Reg3A overexpression promoted cell growth in pancreatic cancer. SOCS3 is a key target in cancer by inhibiting cell growth and inducing apoptosis. SOCS3 negatively regulated Reg3A-mediated cell growth in pancreatic cancer. SOCS3 methylation act in synergy with Reg3A overexpression to promote pancreatic cancer cell growth.
Previous studies have shown that miRNAs participate in a wide range of biological functions and play important roles in various human diseases including cancer. We found miR-146b-5p significantly dysregulated in human pancreatic cancer cells by qRT-PCR. To demonstrate its function and regulation mechanism, we overexpressed miR-146-5p by transfecting the mimics. Our data showed that miR-146b-5p overexpression significantly reduced the abilities of migration and invasion of MIA PaCa-2 pancreatic cancer cells. Furthermore, we found that matrix metalloproteinase 16 (MMP16) was a downstream target of miR-146b-5p by dual-luciferase reporter assay. Altogether, our findings suggest that miR-146b-5p may be involved in pancreatic cancer cell migration and invasion by targeting MMP16, and miR-146b-5p may be a potential therapeutic target for the pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.