a b s t r a c tSGs are mRNA containing cytoplasmic structures that are assembled in response to stress. Tudor-SN protein is a ubiquitously expressed protein. Here, Tudor-SN protein was found to physiologically interact with G3BP, which is the marker and effector of SG. The kinetics of the assembly of SGs in the living cells demonstrated that Tudor-SN co-localizes with G3BP and is recruited to the same SGs in response to different stress stimuli. Knockdown of endogenous Tudor-SN did not inhibit the formation of SGs, but retarded the aggregation of small SGs into large SGs. Thus Tudor-SN may not be an initiator as essential as G3BP for the formation of SGs, but affects the aggregation of SGs. These findings identify Tudor-SN as a novel component of SGs.
Structured summary:MINT-7968768, MINT-7968779: Tudor-SN (uniprotkb:Q7KZF4) physically interacts (MI:0915) with G3BP
Background: Human Tudor staphylococcal nuclease (Tudor-SN) is involved in the snRNP assembly. Results: The efficient formation of Tudor-SN⅐SmB complex requires binding orientation of the methylated ligand and the specific binding pocket. Conclusion: Tudor-SN takes part in regulating pre-mRNA splicing via the recruitment of U5 snRNP and the association of Sm protein.Significance: The mechanism underlying the involvement of Tudor-SN in regulating snRNP biogenesis was revealed.
Multifunctional SND1 (staphylococcal nuclease and tudor domain containing 1) protein is reportedly associated with different types of RNA molecules, including mRNA, miRNA, pre-miRNA, and dsRNA. SND1 has been implicated in a number of biological processes in eukaryotic cells, including cell cycle, DNA damage repair, proliferation, and apoptosis. However, the specific molecular mechanism regarding the anti-apoptotic role of SND1 in mammalian cells remains largely elusive. In this study, the analysis of the online HPA (human protein atlas) and TCGA (the cancer genome atlas) databases showed the significantly high expression of SND1 in liver cancer patients. We found that the downregulation or complete depletion of SND1 enhanced the apoptosis levels of HepG2 and SMMC-7721 cells upon stimulation with 5-Fu (5-fluorouracil), a chemotherapeutic drug for HCC (hepatocellular carcinoma). SND1 affected the 5-Fu-induced apoptosis levels of HCC cells by modulating the expression of UCA1 (urothelial cancer associated 1), which is a lncRNA (long non-coding RNA). Moreover, MYB (MYB proto-oncogene, transcription factor) may be involved in the regulation of SND1 in UCA1 expression. In summary, our study identified SND1 as an anti-apoptotic factor in hepatocellular carcinoma cells via the modulation of lncRNA UCA1, which sheds new light on the relationship between SND1 protein and lncRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.