Extensive research on two-dimensional (2D) materials has triggered the renaissance of an old topic, that is, the intercalation and exfoliation of layer materials. Such top-down exfoliation produced 2D materials and their dispersions have several advantages including low cost, scalable production capability, solution processability, and versatile functionalities stemming from the large number of species of layer materials, and show promising potential in many applications. In recent years, many new methods have been developed for exfoliating layer materials to 2D materials for different application purposes. In this review the different exfoliation approaches are first systematically analyzed from the viewpoint of methodology, and the advantages and disadvantages of each method are compared. Second, the assembly of exfoliated 2D materials into macrostructures by solution-based techniques is summarized. Third, the state-of-the-art applications of 2D material dispersions and their assemblies in electronics and optoelectronics, electrocatalysis, energy storage, etc., are discussed. Finally, insights and perspectives on current research challenges and future opportunities regarding the exfoliation and applications of 2D materials in dispersions are considered.
Titanium carbide MXene quantum dots (QDs) were synthesized using an effective fluorine-free method as a biocompatible and highly efficient nanoagent for photothermal therapy (PTT) applications. In contrast to the traditional, hazardous and time-consuming process of HF pretreatment, our fluorine-free method is safe and simple. More importantly, abundant Al oxoanions were found to be modified on the MXene QD surface by the fluorine-free method, which endowed the QDs with strong and broad absorption in the NIR region. As a result, the as-prepared MXene QDs exhibited an extinction coefficient as large as 52.8 Lg cm at 808 nm and a photothermal conversion efficiency as high as 52.2%. Both the values are among the best reported so far. The as-prepared MXene QDs achieved simultaneous photoacoustic (PA) imaging and the remarkable PTT effect of tumors. Moreover, MXene QDs showed great biocompatibility without causing noticeable toxicity in vitro and in vivo, indicating their high potential for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.