In the past few years, deep learning has become a research hotspot and has had a profound impact on computer vision. Deep CNN has been proven to be the most important and effective model for image processing, but due to the lack of training samples and huge number of learning parameters, it is easy to tend to overfit. In this work, we propose a new two-stage CNN image classification network, named “Improved Convolutional Neural Networks with Image Enhancement for Image Classification” and PLANET in abbreviation, which uses a new image data enhancement method called InnerMove to enhance images and augment the number of training samples. InnerMove is inspired by the “object movement” scene in computer vision and can improve the generalization ability of deep CNN models for image classification tasks. Sufficient experiment results show that PLANET utilizing InnerMove for image enhancement outperforms the comparative algorithms, and InnerMove has a more significant effect than the comparative data enhancement methods for image classification tasks.
Feature selection plays an important role in machine learning and data mining. In recent years, various feature measurements have been proposed to select significant features from high-dimensional datasets. However, most traditional feature selection methods will ignore some features which have strong classification ability as a group but are weak as individuals. To deal with this problem, we redefine the redundancy, interdependence, and independence of features by using neighborhood entropy. Then the neighborhood entropy-based feature contribution is proposed under the framework of cooperative game. The evaluative criteria of features can be formalized as the product of contribution and other classical feature measures. Finally, the proposed method is tested on several UCI datasets. The results show that neighborhood entropy-based cooperative game theory model (NECGT) yield better performance than classical ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.