Recently, the long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was reported to be involved in the pathogenesis of several cancers, including human colorectal cancer (CRC). However, the molecular basis for cancer initiation, development, and progression remains unclear. In this study, we observe that upregulated PVT1 is associated with poor prognosis and bad clinicopathological features of CRC patients. In vitro means of PVT1 loss in a CRC cell line inhibit cell proliferation, migration, and invasion. Furthermore, dual-luciferase reporter and RNA pull-down assays indicated that PVT1 binds to miR-16-5p, which has been shown to play strong tumor suppressive roles in CRC. Targeted loss of miR-16-5p partially rescues the suppressive effect induced by PVT1 knockdown. Vascular endothelial growth factor A (VEGFA), a direct downstream target of miR-16-5p, was suppressed by PVT1 knockdown in CRC cells. Overexpression of VEGFA is known to modulate the AKT signaling cascade by activating vascular endothelial growth factor receptor 1 (VEGFR1). We, therefore, show that PVT1 loss combined with miR-16-5p overexpression reduces tumor volume maximally when propagated within a mouse xenograft model. We conclude that the PVT1-miR-16-5p/VEGFA/VEGFR1/AKT axis directly coordinates the response in CRC pathogenesis and suggest PVT1 as a novel target for potential CRC therapy.
In industrial measurements and online monitoring, full-field and high-efficiency deformation analysis has been increasingly important and highly demanded in recent years. In this paper, a fast three-dimensional digital image correlation (3D-DIC) method was proposed to implement real-time measurement. Two improvements were suggested to accelerate the computation speed without sacrificing the accuracy. First, an efficient inverse compositional Gauss-Newton (IC-GN) algorithm was developed to avoid redundant computation. Moreover, a seed point-based parallel method was extended for 3D-DIC to achieve parallel computation and faster convergence speed. The detailed process of the real-time measurement using the proposed method was also introduced. Benefiting from the efficient IC-GN algorithm and parallel processing software we developed, full-field, real-time 3D deformation monitoring was realized at a frame rate of 10 frames/s with resolution of 5000 points per frame. For validation, the displacement field of a four-point bending beam was determined by the real-time 3D-DIC. As an application, the real-time human pulse diagnosis was also performed based on the presented technique. Experimental results verify that the proposed real-time 3D-DIC is practicable and effective for traditional Chinese medicine.
The accuracy of strain measurement using a common optical extensometer with two-dimensional (2D) digital image correlation (DIC) is not sufficient for experimental applications due to the effect of out-of-plane motion. Although three-dimensional (3D) DIC can measure all three components of displacement without introducing in-plane displacement errors, 3D-DIC requires the stringent synchronization between two digital cameras and requires complicated system calibration of binocular stereovision, which makes the measurement rather inconvenient. To solve the problems described above, this paper proposes a self-calibration single-lens 3D video extensometer for non-contact, non-destructive and high-accuracy strain measurement. In the established video extensometer, a single-lens 3D imaging system with a prism and two mirrors is constructed to acquire stereo images of the test sample surface, so the problems of synchronization and out-of-plane displacement can be solved easily. Moreover, a speckle-based self-calibration method which calibrates the single-lens stereo system using the reference speckle image of the specimen instead of the calibration targets is proposed, which will make the system more convenient to be used without complicated calibration. Furthermore, an efficient and robust inverse compositional Gauss-Newton algorithm combined with a robust stereo matching stage is employed to achieve high-accuracy and real-time subset-based stereo matching. Tensile tests of an Al-alloy specimen were performed to demonstrate the feasibility and effectiveness of the proposed self-calibration single-lens 3D video extensometer.
The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.