Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI 2m (defined as urban-rural difference in 2m-height air temperature) and UHI s (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI 2m or 2.8 K higher UHI s during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored and anthropogenic heat during HWs are the primary contributors to the synergistic effects.
The costs for solar photovoltaics, wind, and battery storage have dropped markedly since 2010, however, many recent studies and reports around the world have not adequately captured such dramatic decrease. Those costs are projected to decline further in the near future, bringing new prospects for the widespread penetration of renewables and extensive power-sector decarbonization that previous policy discussions did not fully consider. Here we show if cost trends for renewables continue, 62% of China's electricity could come from nonfossil sources by 2030 at a cost that is 11% lower than achieved through a business-as-usual approach. Further, China's power sector could cut half of its 2015 carbon emissions at a cost about 6% lower compared to business-as-usual conditions.
As part of its Paris Agreement commitment, China pledged to peak carbon dioxide (CO 2) emissions around 2030, striving to peak earlier, and to increase the non-fossil share of primary energy to 20% by 2030. Yet by the end of 2017, China emitted 28% of the world's energy-related CO 2 emissions, 76% of which were from coal use. How China can reinvent its energy economy cost-effectively while still achieving its commitments was the focus of a three-year joint research project completed in September 2016. Overall, this analysis found that if China follows a pathway in which it aggressively adopts all cost-effective energy efficiency and CO 2 emission reduction technologies while also aggressively moving away from fossil fuels to renewable and other non-fossil resources, it is possible to not only meet its Paris Agreement Nationally Determined Contribution (NDC) commitments, but also to reduce its 2050 CO 2 emissions to a level that is 42% below the country's 2010 CO 2 emissions. While numerous barriers exist that will need to be addressed through effective policies and programs in order to realize these potential energy use and emissions reductions, there are also significant local environmental (e.g., air quality), national and global environmental (e.g., mitigation of climate change), human health, and other unquantified benefits that will be realized if this pathway is pursued in China.
Microgrids have become increasingly popular in the United States. Supported by favorable federal and local policies, microgrid projects can provide greater energy stability and resilience within a project site or community. This paper reviews major federal, state, and utility-level policies driving microgrid development in the United States. Representative U.S. demonstration projects are selected and their technical characteristics and non-technical features are introduced. The paper discusses trends in the technology development of microgrid systems as well as microgrid control methods and interactions within the electricity market. Software tools for microgrid design, planning, and performance analysis are illustrated with each tool's core capability. Finally, the paper summarizes the successes and lessons learned during the recent expansion of the U.S. microgrid industry that may serve as a reference for other countries developing their own microgrid industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.