The compact and low-cost surface-emitting lasers in the 3−5 μm mid-infrared (MIR) range are highly desirable for important applications such as gas detection, noninvasive medical diagnosis, and infrared scene projection. Due to the intrinsic noise of general narrow-bandgap semiconductors, the MIR is a challenging region for photonics. Here, we demonstrate the first black phosphorus (BP)-based MIR surface-emitting laser operating at room temperature fabricated with BP as the active gain materials embedded into a SiO 2 /Si 3 N 4 open microcavity on silicon. Optically pumped lasing at ∼3765 nm is successfully realized in the demonstrated device by significantly increased luminescence efficiency in the BP lamellar structure and resolving the general issues for processing BP and other two-dimensional materials as gain medium with the specific design of an open cavity. This is the first demonstration of a BP-based light-emitting device and thus paves a pathway toward monolithic integration of Si-photonics in the MIR range.
Multiple-layer InAs/GaAs quantum dot (QD) laser structures were etched to remove the p-side AlGaAs cladding layers to investigate the temperature-dependent photoluminescence (PL) characteristics. Four QD samples, including undoped as grown QDs, p-doped as grown QDs, undoped annealed QDs, and p-doped annealed QDs, were prepared by molecular beam epitaxy (MBE) and a postgrowth annealing process for comparison. Among them, modulation p-doped QD samples exhibit much less temperaturedependent characteristics of PL spectra and notable insensitivity to intermixing compared to undoped ones. This is attributed to the effects of modulation p-doping, which can inhibit holes' thermal broadening in their closely spaced energy levels and significantly suppress In/Ga interdiffusion between QDs and their surrounding matrix. These results provide greater freedom in the choice of MBE growth for high-quality active regions and claddings of QD laser diodes. The superior features of the modulation p-doped QD materials have been transferred naturally to the laser devices. The continuous-wave ground-state (GS) lasing has been realized in both p-doped QD Fabry−Perot (F−P) and laterally coupled distributed-feedback (LC-DFB) narrow ridge lasers with very short cavity length without facet coatings, in which a 1315 nm GS lasing has been found in a F−P laser with a 400 μm cavity length, while single longitudinal mode lasing with a very large tunable range of 140 nm and side mode suppression ratio of 51 dB is achieved in an LC-DFB laser. This work demonstrates great development potential of InAs/GaAs QD lasers for applications in high-speed fiber-optic communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.