Multi-photoaddressable systems (MPSs) belong to complex systems, which are comprised of more than one photoswitching molecule and can respond to different wavelengths of light simultaneously. While MPSs have been extensively applied in various fields, there are also some challenges, such as the deficiency of the wavelength-selective control and the interference from the poor thermodynamic stability of used photoswitching molecules. Herein, we reported two robust MPSs (MPS1/2) consisting of diarylethylene derivative (DAE) and different donor−acceptor Stenhouse adducts (DASAs), in which both opened and closed forms of DAE and opened forms of DASAs are thermodynamically stable. MPS1/2 enable fully reversible cyclic photoswitching with improved thermal interference resistance. Moreover, MPS2 also shows a favorable property in PMMA films and has been applied in multicolor display. It is expected that the prepared MPSs could be used in more fields such as information storage and reading and encoding light.
Non-linear acoustic technique is an attractive approach in evaluating early fatigue as well as cracks in material. However, its accuracy is greatly restricted by external non-linearities of ultra-sonic measurement systems. In this work, an acoustical data-driven deviation detection method, called the consensus self-organizing models (COSMO) based on statistical probability models, was introduced to study the evolution of localized crack growth. By using pitch-catch technique, frequency spectra of acoustic echoes collected from different locations of a specimen were compared, resulting in a Hellinger distance matrix to construct statistical parameters such as z-score, p-value and T-value. It is shown that statistical significance p-value of COSMO method has a strong relationship with the crack growth. Particularly, T-values, logarithm transformed p-value, increases proportionally with the growth of cracks, which thus can be applied to locate the position of cracks and monitor the deterioration of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.