A preheated high-temperature environment is believed to be critical for a chemical-exfoliation-based production of graphenes starting from graphite oxide, a belief that is based on not only experimental but also theoretical viewpoints. A novel exfoliation approach is reported in this study, and the exfoliation process is realized at a very low temperature, which is far below the proposed critical exfoliation temperature, by introducing a high vacuum to the exfoliation process. Owing to unique surface chemistry, low-temperature exfoliated graphenes demonstrate an excellent energy storage performance, and the electrochemical capacitance is much higher than that of the high-temperature exfoliated ones. The low-temperature exfoliation approach presents us with a possibility for a mass production of graphenes at low cost and great potentials in energy storage applications of graphene-based materials.
New for old: A novel catalytic combustion method to synthesize multiwalled carbon nanotubes (MWNTs, see SEM image) in situ in high yields from polypropylene as the carbon source in the presence of an organic‐modified clay and a supported nickel catalyst is reported. The method allows new high‐value MWNTs to be created from used polypropylene in an energy‐saving and environmentally friendly process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.