The NAD(+)-dependent protein deacetylase SIRT1 is linked to cellular survival pathways by virtue of keeping the tumor suppressor gene p53 and members of the forkhead transcription factor family deacetylated. To validate SIRT1 as a therapeutic anti-cancer target, we performed immunohistochemistry experiments to study the in vivo expression of SIRT1 in cancer specimens. We show that human SIRT1 is highly expressed in cancer cell lines as well as in tissue samples from colon carcinoma patients. Interestingly, there is a strong cytosolic component in the SIRT1 expression pattern. We further characterized SIRT1 in p53-wild-type and -mutant cell lines and show that SIRT1 mRNA-knockdown leads to a p53-independent decrease of cell proliferation and induction of apoptosis. In addition, SIRT1 expression has been found to be inducible upon DNA damage. A previously discovered small molecule SIRT1 inhibitor with nanomolar in vitro activity has been tested in cancer relevant assays. The SIRT1 inhibitory compound showed no potent anti-proliferative activity despite hitting its molecular target within tumor cells. From these studies we conclude that it may not be sufficient to block the catalytic function of SIRT1, and that its survival effects may be mainly brought about by means other then the deacetylase function. The increased cytosolic expression of SIRT1 in cancer cells could be an indicator of such novel functions.
A methodology for screening either various catalysts for a given metathesis reaction, i.e., ring opening‐ring closing alkene metathesis (RO‐RCM) and cross‐metathesis (CM), or various substrates for a given pre‐catalyst on a thin layer chromatography (TLC) plate has been developed. As the substrates elute with the solvent, this TLC‐based system acts as a heterogeneous catalyst bed (“TLC reactor”). Selected promising catalyst candidates were screened on a TLC plate and their initial catalytic potential as observed in the TLC test was later fully confirmed in a classical heterogeneous reaction set‐up using standard commercially available silica (D11‐10). Reacting polyfunctional, natural product‐like substrates in our TLC reactor allows the simultaneous screening of various substrates and the convenient micro‐scale preparation and isolation of potentially biologically active products.
A zebrafish cDNA encoding a novel keratin protein was characterized and named keratin8, or krt8. krt8 expression was initiated at 4.5 hr postfertilization, immediately after the time of zygotic genome activation. The expression is limited to a single layer of envelope cells on the surface of embryos and, in later stages, it also appears in the innermost epithelial layer of the anterior-and posteriormost portions of the digestive tract. In adult, its expression was limited to the surface layer of stratified epithelial tissues, including skin epidermis and epithelia of mouth, pharynx, esophagus, and rectum but not in the gastral and intestinal epithelia. By using a 2.2-kb promoter from krt8, several stable green fluorescent protein (gfp) transgenic zebrafish lines were established. All of these transgenic lines displayed GFP expression in tissues mentioned above except for the rectum; therefore, the pattern of transgenic GFP expression is essentially identical to that of the endogenous krt8 mRNAs. krt8-GFP fusion protein was also expressed in zebrafish embryos under a ubiquitous promoter, and the fusion protein was capable of assembling into intermediate filaments only in the epithelia that normally expressed krt8 mRNAs, indicating the specificity of keratin assembly in vivo.
The nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase SIRT1 has been linked to fatty acid metabolism via suppression of peroxysome proliferator-activated receptor gamma (PPAR-gamma) and to inflammatory processes by deacetylating the transcription factor NF-kappaB. First, modulation of SIRT1 activity affects lipid accumulation in adipocytes, which has an impact on the etiology of a variety of human metabolic diseases such as obesity and insulin-resistant diabetes. Second, activation of SIRT1 suppresses inflammation via regulation of cytokine expression. Using high-throughput screening, the authors identified compounds with SIRT1 activating and inhibiting potential. The biological activity of these SIRT1-modulating compounds was confirmed in cell-based assays using mouse adipocytes, as well as human THP-1 monocytes. SIRT1 activators were found to be potent lipolytic agents, reducing the overall lipid content of fully differentiated NIH L1 adipocytes. In addition, the same compounds have anti-inflammatory properties, as became evident by the reduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). In contrast, a SIRT1 inhibitory compound showed a stimulatory activity on the differentiation of adipocytes, a feature often linked to insulin sensitization.
A 1,934-bp muscle-specific promoter from the zebrafish mylz2 gene was isolated and characterized by transgenic analysis. By using a series of 5 promoter deletions linked to the green fluorescent protein (gfp) reporter gene, transient transgenic analysis indicated that the strength of promoter activity appeared to correlate to the number of muscle cis-elements in the promoter and that a minimal ؊77-bp region was sufficient for a relatively strong promoter activity in muscle cells. Stable transgenic lines were obtained from several mylz2-gfp constructs. GFP expression in the 1,934-bp promoter transgenic lines mimicked well the expression pattern of endogenous mylz2 mRNA in both somitic muscle and nonsomitic muscles, including fin, eye, jaw, and gill muscles. An identical pattern of GFP expression, although at a much lower level, was observed from a transgenic line with a shorter 871-bp promoter. Our observation indicates that there is no distinct cis-element for activation of mylz2 in different skeletal muscles. Furthermore, RNA encoding a dominant negative form of cAMP-dependent protein kinase A was injected into mylz2-gfp transgenic embryos and GFP expression was significantly reduced due to an expanded slow muscle development at the expense of GFP-expressing fast muscle. The mylz2-gfp transgene was also transferred into two zebrafish mutants, spadetail and chordino, and several novel phenotypes in muscle development in these mutants were discovered. Developmental Dynamics 227:14 -26, 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.