[1] A temperature and current velocity mooring, located on the upper continental slope of the northern South China Sea, recorded a number of second baroclinic mode (mode 2) internal solitary waves (ISWs). These types of waves are seldom observed in nature. The mode 2 ISWs typically showed upward (downward) displacement of isotherms in the upper (lower) water column and three layers of eastward, westward, and eastward current from the uppermost to bottommost portions of a wave. In summer, westward-propagating mode 2 ISWs were observed only occasionally. These waves generally appeared after mode 1 ISWs, a feature that may relate to the diurnal tide with a period of approximately 24 hours. The displacement of isotherms induced by mode 2 ISWs was 20 ± 14 m at 75 m and À22 ± 15 m at 240 m, and the characteristic time scale was approximately 8.0 ± 4.3 min. In winter, mode 2 ISWs were more active but mode 1 ISWs were rarely observed. Isotherm displacement by mode 2 ISWs in winter was 30 ± 18 m at 75 m and À26 ± 16 m at 240 m, and the average characteristic time scale was 6.9 ± 4.6 min. The mode 2 ISWs thus had larger amplitudes and smaller time scales in winter than they did in summer. The observed vertical temperature profile also showed notable seasonal change. The thermocline was shallow in summer and deep in winter. In winter, vertical temperature profiles indicated that the main thermocline was located near middepth over the upper continental slope near the 350 m isobath. Mode 1 ISWs were more active in summer than in winter, reflecting the larger Ursell numbers for mode 1 ISWs in summer. Among mode 2 ISWs in summer, 90% appeared after mode 1 ISWs. These results suggest that mode 2 ISWs could be related to mode 1 ISWs. In contrast, mode 2 ISWs were more active in winter than in summer, with larger mode 2 Ursell numbers also found in winter. Among winter mode 2 ISWs, 72% appeared without mode 1 ISWs. Mode 2 ISWs in winter could be related to the main thermocline being located near middepth. These seasonal variations of mode 2 ISWs were correlated with the seasonal change of local stratification. Further study on the different generating mechanisms of mode 2 ISWs in summer and winter is needed.
Abstract. Two types of second baroclinic mode (mode-2) internal solitary waves (ISWs) were found on the continental slope of the northern South China Sea. The convex waveform displaced the thermal structure upward in the upper layer and downward in the lower layer, causing a bulge in the thermocline. The concave waveform did the opposite, causing a constriction. A few concave waves were observed in the South China Sea, marking the first documentation of such waves. On the basis of the Korteweg-de Vries (K-dV) equation, an analytical three-layer ocean model was used to study the characteristics of the two mode-2 ISW types. The analytical solution was primarily a function of the thickness of each layer and the density difference between the layers. Middle-layer thickness plays a key role in the resulting mode-2 ISW. A convex wave was generated when the middle-layer thickness was relatively thinner than the upper and lower layers, whereas only a concave wave could be produced when the middle-layer thickness was greater than half the water depth. In accordance with the K-dV equation, a positive and negative quadratic nonlinearity coefficient, α 2 , which is primarily dominated by the middle-layer thickness, resulted in convex and concave waves, respectively. The analytical solution showed that the wave propagation of a convex (concave) wave has the same direction as the current velocity in the middle (upper or lower) layer. Analysis of the three-layer ocean model properly reproduced the characteristics of the observed mode-2 ISWs in the South China Sea and provided a criterion for the existence of convex or concave waves. Concave waves were seldom seen because of the rarity of a stratified ocean with a thick middle layer. This analytical result agreed well with the observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.