In this study, the flow characteristics and enhanced heat transfer performance of circular dimples in a channel flow were numerically analysed and compared with a flat channel. The effect of shifting the deepest point of the dimples in turbulent flow on their drag and heat transfer performance are also discussed. The strength and extent of the induced recirculating flow is suppressed significantly when the deepest point is shifted downstream, enhancing the heat transfer performance of the dimpled wall. At the same time, the flow structure above the dimpled wall is manipulated by the geometry changes. The flow impingement on the dimpled wall increases drag; consequently, the power required to drive the flow is increased. A parametric study is conducted to optimize the shifting of the deepest point to maximize heat transfer performance while minimizing the drag increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.