This paper presents the application of recurrence plots (RPs) and recurrence quantification analysis (RQA) in the diagnostics of various faults in a gear-train system. For this study, multiple test gears with different health conditions (such as a healthy gear, and defective gears with a root crack on one tooth, multiple cracks on five teeth and missing tooth) are studied. The vibration data of a gear-train is measured by a triaxial accelerometer installed on the test. Two different support vector machine classifiers are trained and compared. Mutual information is used to rank the extracted features in order to select an optimal subset that provides as much information as possible about the intrinsic dynamics of the system. Results indicate that our approach is quite efficient in diagnosing the status of the health of the gear system and characterizing the dynamic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.