This study demonstrates that NOS inhibitor L-NAME administration alone has insignificant effects on pulpal blood flow, although L-NAME pretreatment can potentiate SP-induced vasodilatation, probably via increased activity in the enzyme guanylate cyclase. CGRP and papaverine did not respond to L-NAME pretreatment, indicating that they are not mediated via an endothelium-dependent mechanism.
Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease (CKD) and diabetes. Our two-stage whole-exome sequencing study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort (CRIC) and Atherosclerosis Risk in Communities (ARIC) studies (stage-1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine (TOPMed) participants (stage-2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex, and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test (SKAT-O) implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds (95% confidence interval: 33.6, 1105) of DKD compared with non-carriers (P = 3.59 × 10−9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% confidence interval: 3.06, 9.21) of DKD (P = 2.72 × 10−9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10−8) and NPEPPS (P = 1.51 × 10−7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.