Nuclear‐cytoplasmic transport is necessary for the biological function of nuclear proteins. The mechanism underlying this process is very complex and has been a subject of intense research. Yes‐associated protein (YAP), a Hippo signaling pathway effector, localizes to both the cytoplasm and the nucleus and can influence cell proliferation, stem cell status, and tissue homeostasis. Recent studies have focused on the significance of YAP distribution between the nucleus and the cytoplasm in disease, but it remains unclear how this dynamic process is regulated. In this review, we discuss YAP nuclear‐cytoplasmic transport under different physiological and pathological conditions in terms of mechanical signaling, protein modification, and metabolism. Understanding the mechanisms underlying nuclear‐cytoplasmic YAP transport mechanism under different physiological and pathological conditions may help identify important targets for disease treatment.
AIM: To reveal whether and how Yes-associated protein (YAP) promotes the occurrence of subretinal fibrosis in age-related macular degeneration (AMD). METHODS: Cobalt chloride (CoCl2) was used in primary human umbilical vein endothelial cells (HUVECs) to induce hypoxia in vitro. Eight-week-old male C57BL/6J mice weighing 19-25 g were used for a choroidal neovascularization (CNV) model induced by laser photocoagulation in vivo. Expression levels of YAP, phosphorylated YAP, mesenchymal markers [α smooth muscle actin (α-SMA), vimentin, and Snail], and endothelial cell markers (CD31 and zonula occludens 1) were measured by Western blotting, quantitative real-time PCR, and immunofluorescence microscopy. Small molecules YC-1 (Lificiguat, a specific inhibitor of hypoxia-inducible factor 1α), CA3 (CIL56, an inhibitor of YAP), and XMU-MP-1 (an inhibitor of Hippo kinase MST1/2, which activates YAP) were used to explore the underlying mechanism. RESULTS: CoCl2 increased expression of mesenchymal markers, decreased expression of endothelial cell markers, and enhanced the ability of primary HUVECs to proliferate and migrate. YC-1 suppressed hypoxia-induced endothelial-to-mesenchymal transition (EndMT). Moreover, hypoxia promoted total expression, inhibited phosphorylation, and enhanced the transcriptional activity of YAP. XMU-MP-1 enhanced hypoxia-induced EndMT, whereas CA3 elicited the opposite effect. Expression of YAP, α-SMA, and vimentin were upregulated in the laser-induced CNV model. However, silencing of YAP by vitreous injection of small interfering RNA targeting YAP could reverse these changes. CONCLUSION: The findings reveal a critical role of the hypoxia-inducible factor-1α (HIF-1α)/YAP signaling axis in EndMT and provide a new therapeutic target for treatment of subretinal fibrosis in AMD.
Age‐related macular degeneration (AMD) is the main reason of irreversible vision loss in the elderly. The subretinal fibrosis subsequent to choroidal neovascularization (CNV) is an important feature in the late stage of wet AMD and is considered to be one reason for incomplete response to anti‐VEGF drugs. Recent studies have shown that pericyte‐myofibroblast transition (PMT) is an important pathological process involving fibrotic diseases of various organs. However, the specific role and mechanism of PMT in the subretinal fibrosis of CNV have not been clarified. It has been clear that the Hippo pathway along with its downstream effector Yes‐associated protein (YAP) plays an important role in both epithelial and endothelial myofibroblast development. Therefore, we speculate whether YAP participates in PMT of pericytes and promotes fibrosis of CNV. In this study, experimental CNV was induced by laser photocoagulation in C57BL/6J (B6) mice, and aberrant YAP overexpression was detected in the retinal pigment epithelial/choroid/sclera tissues of the laser‐injured eyes. YAP knockdown reduced the proliferation, migration, and differentiation of human retinal microvascular pericytes in vitro. It also reduced subretinal fibrosis of laser‐induced CNV in vivo. Moreover, by proteomics‐based analysis of pericyte conditioned medium (PC‐CM) and bioinformatic analyses, we identified that the crosstalk between Hippo/YAP and MAPK/Erk was involved in expression of filamin A in hypoxic pericytes. These findings suggest that Hippo/YAP and MAPK/Erk are linked together to mediate pericyte proliferation, migration as well as differentiation, which may embody potential implications for treatment in diseases related to CNV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.