The effects of starch origin (potato, corn, and rice starches) and hypochlorite level (NaOCl, 0 .8% and 2% w/w) on the structures and physicochemical properties of oxidized starches were investigated. Carboxyl and carbonyl group contents of oxidized starches increased with increasing NaOCl level, with potato starch having the highest and corn starch having the lowest carboxyl groups content at both NaOCl levels. Oxidation generally reduced the pasting temperature and viscosity of native starches as demonstrated by using a Rapid Visco Analyser. The peak viscosities of oxidized rice and corn starches were higher than those of their native counterparts at 0.8% NaOCl. The morphology of starches was not altered and X-ray diffraction patterns of all the starches remained unchanged after oxidation. Oxidized starch batters exhibited greater adhesions than did native starch batters, with rice starch batter exhibiting the greatest adhesion. Carbohydrate profiles by high-performance size-exclusion chromatography indicated that both amylopectin and amylose were degraded during oxidation. The level of oxidation was largely dependent on the degree of crystallinity of starch and the degree of polymerization of amylose, whereas the adhesion property of oxidized starch was mainly attributed to its granular size and shape.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.