Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation-atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of Ϸ25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests.remote sensing ͉ tropical forests phenology ͉ vegetation climate interaction T he trees of tropical rainforests are known to exhibit a range of phenological behavior, from episodes of ephemeral leaf bursts followed by long quiescent periods to continuous leafing, and from complete intraspecific synchrony to complete asynchrony (1). Several agents (e.g., herbivory, water stress, day length, light intensity, mineral nutrition, and flood pulse) have been identified as proximate cues for leafing and abscission in these communities (1-8). These studies were focused on the timing of phenological events but not on the accompanying changes in leaf area. Leaves selectively absorb solar radiation, emit longwave radiation and volatile organic compounds, and facilitate growth by regulating carbon dioxide influx and water vapor efflux from stomates. Therefore, leaf area dynamics are relevant to studies of climatic, hydrological, and biogeochemical cycles.The sheer size and diversity of rainforests preclude a synoptic view of leaf area changes from ground sampling. We therefore used data on green leaf area of the Amazon basin (Ϸ7.2 ϫ 10 6 km 2 ) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Na- Results Seasonality in LAI Time Series.Leaf area data for the Amazon rainforests exhibit notable seasonality, with an amplitude (peakto-trough difference) that is 25% of the average annual LAI of 4.7 (Fig. 1A). This average amplitude of 1.2 LAI is about twice the error of a single estimate of MODIS LAI, and thus is not an artifact of remote observation or data processing (see SI Materials and Methods). The aggregate phenological cycle appears timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of leaf flushing and abscission. These patterns result in leaf area leading solar radiation during the entire seasonal cycle, with higher leaf area during the shorter dry season when solar radiation loads are hig...
Thermal radiation can be substantially enhanced in the near-field scenario due to the tunneling of evanescent waves. Monolayer graphene could play a vital role in this process owing to its strong infrared plasmonic response, however, which still lacks an experimental verification due to the technical challenges. Here, we manage to make a direct measurement about plasmon-mediated thermal radiation between two macroscopic graphene sheets using a custom-made setup. Super-Planckian radiation with efficiency 4.5 times larger than the blackbody limit is observed at a 430-nm vacuum gap on insulating silicon hosting substrates. The positive role of graphene plasmons is further confirmed on conductive silicon substrates which have strong infrared loss and thermal emittance. Based on these, a thermophotovoltaic cell made of the graphene–silicon heterostructure is lastly discussed. The current work validates the classic thermodynamical theory in treating graphene and also paves a way to pursue the application of near-field thermal management.
Received XX Month XXXX; accepted XX Month XXXX; published online XX Month XXXX)We report a daytime passive radiative cooler using chemically fabricated porous anodic aluminum oxide (AAO) membranes. Effective medium theory (EMT) has been applied to analyzing the optical properties of the air-doped porous medium. The composite structure is specifically optimized so that it has a high absorbance (emittance) in the far-infrared atmospheric window and nearly no loss in the solar spectrum. The calculated emittance is well reproduced in the experiment by our AAO sample. The fabricated porous membrane shows a potential cooling power density of 64 W/m 2 at ambient (humidity = 75%) under direct sunlight irradiance (AM1.5). Experimentally, the sample is cooled by a 2.6 °C temperature reduction below the ambient air temperature in the sunlight. This performance shows little variance at night. The AAO approach proposed here may provide a promising way to produce low-cost and efficient radiative cooler in large scales for feasible energy conservation. Published by AIP Publishing. http://doi.org/10.1063/x.xxxxxxx
Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.