Electrospinning using natural proteins and synthetic polymers offers an attractive technique for producing fibrous scaffolds with potential for tissue regeneration and repair. Nanofibrous scaffolds of silk fibroin (SF) and poly(L-lactic acid-co-epsilon-caprolactone) (P(LLA-CL)) blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol as a solvent via electrospinning. The average nanofibrous diameter increased with increasing polymer concentration and decreasing the blend ratio of SF to P(LLA-CL). Characterizations of XPS and (13)C NMR clarified the presence of SF on their surfaces and no obvious chemical bond reaction between SF with P(LLA-CL) and SF in SF/P(LLA-CL) nanofibers was present in a random coil conformation, SF conformation transformed from random coil to beta-sheet when treated with water vapor. Whereas water contact angle measurements conformed greater hydrophilicity than P(LLA-CL). Both the tensile strength and elongation at break increased with the content increasing of P(LLA-CL). Cell viability studies with pig iliac endothelial cells demonstrated that SF/P(LLA-CL) blended nanofibrous scaffolds significantly promoted cell growth in comparison with P(LLA-CL), especially when the weight ratio of SF to P(LLA-CL) was 25:75. These results suggested that SF/P(LLA-CL) blended nanofibrous scaffolds might be potential candidates for vascular tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.