No author has a financial or proprietary interest in any material or method mentioned.
Citation: Li H, Wang Y, Dou R, et al. Intraocular pressure changes and relationship with corneal biomechanics after SMILE and FS-LASIK. Invest Ophthalmol Vis Sci. 2016;57:4180-4186. DOI:10.1167/iovs.16-19615 PURPOSE. The purpose of this article was to evaluate intraocular pressure (IOP) changes and investigate the relationship with corneal biomechanics after small-incision lenticule extraction (SMILE) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). METHODS.A total of 193 eyes of 193 patients who underwent SMILE and FS-LASIK procedures were included in this retrospective study. Data were collected preoperatively and postoperatively, including Goldmann-correlated IOP (IOPg), corneal-compensated IOP (IOPcc), corneal hysteresis (CH), and corneal resistance factor (CRF) by ocular response analyzer, noncontact intraocular pressure (IOP NCT ) by noncontact tonometer, and Ehlers, Shah, Dresden, Kohlhaas, Orssengo/Pye by the Pentacam corrected system. Changes in both groups and differences between groups were evaluated. Multiple linear regression models were constructed to explore factors influencing IOP changes.RESULTS. In SMILE, the IOPg, IOPcc, IOP NCT , and Kohlhaas decreased significantly at 1 month postoperatively (P < 0.01), whereas with the Ehlers formula they significantly increased (P < 0.01). IOPs decreased at 3 and 6 months compared with all preoperative values except Ehlers values (P < 0.01), but there was no significant difference between 3 and 6 months (P > 0.05). In FS-LASIK, the IOPg, IOPcc, and IOP NCT decreased significantly at 1 month (P < 0.01), whereas in the Ehlers and Shah formulas they significantly increased (P < 0.01). Compared with preoperative values, the IOPs decreased at 3 and 6 months except in the Ehlers and Shah formulas (P < 0.01). Only IOPg and IOPcc differed between 3 and 6 months (P < 0.05). The Ehlers and Shah formulas were closer to the preoperative IOP for both groups, with variation approximately 1 mm Hg at 6 months postoperatively. Preoperative IOP, postoperative corneal resistance factor, corneal hysteresis, and flat keratometry were enrolled into the regression equations.CONCLUSIONS. IOP underestimation after SMILE or FS-LASIK was related to corneal biomechanics as well as preoperative IOP and flat keratometry. IOP after SMILE seem to remain more stable. Accordingly, the Ehlers and Shah formulas were closer to the preoperative IOP. It may be useful to estimate future IOP with the best-fit models after surgery.
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programs: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocrtical nuclei depending on their origin: the abundant, midbrain-generated class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
BackgroundTo evaluate the refractive outcomes for the correction of low to moderate astigmatism up to 1 year following small incision lenticule extraction (SMILE) surgery.MethodsThis retrospective study enrolled 98 eyes from 98 patients who underwent SMILE surgery for the correction of myopia and astigmatism. Only right eyes were included in this study to avoid the bias of orientation errors. The vector method was used to analyze the outcomes of astigmatism at 1 month, 6 months and 12 months after the procedure, including the double-angle plots, correction index (CI), index of success (IOS), angle of error (AofE) and magnitude of error (MofE). The effectiveness, safety, stability and predictability were also investigated during the 12-month follow-up.ResultsThe preoperative cylinder ranged from -2.75 D to -0.25 D (average of -0.90 ± 0.68 D), and the mean postoperative cylinder values were -0.24 ± 0.29 D, -0.24 ± 0.29 D, and -0.20 ± 0.27 D at 1 month, 6 months, and 12 months, respectively. The mean astigmatism in vector form was -0.14 D × 27.19° at 1 month, -0.13 D × 27.29° at 6 months, and -0.10 D × 28.63° at 12 months after surgery. The CI was 1.00 ± 0.32 and IOS was 0.29 ± 0.44 at the 12-month follow-up. Significant negative correlations were found between the CI and absolute target induced astigmatism (TIA) value, and positive correlations were found between the IOS and absolute AofE value (P < 0.05). The MofE was limited within ±1.00 D at the 12-month follow-up. Fifty-six eyes (57.1%) gained one line in corrected distance visual acuity (CDVA) and five eyes (5.1%) gained two lines. There were no significant differences observed in the refractive outcomes among time points.ConclusionsSMILE surgery was effective and safe in correcting low to moderate astigmatism, and stable refractive outcomes were observed at the long-term follow-up. The undercorrection of astigmatism could possibly be influenced by attempted astigmatism correction preoperatively, the axis rotation during the surgery or wound healing postoperatively. This study suggested that nomograms should be adjusted in correcting astigmatism with SMILE surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.