We describe a knowledge-driven algorithm to automatically delineate the caudate nucleus (CN) region of the human brain from a magnetic resonance (MR) image. Since the lateral ventricles (LVs) are good landmarks for positioning the CN, the algorithm first extracts the LVs, and automatically localizes the CN from this information guided by anatomic knowledge of the structure. The face validity of the algorithm was tested with 55 high-resolution T1-weighted magnetic resonance imaging (MRI) datasets, and segmentation results were overlaid onto the original image data for visual inspection. We further evaluated the algorithm by comparing automated segmentation results to a "gold standard" established by human experts for these 55 MR datasets. Quantitative comparison showed a high intraclass correlation between the algorithm and expert as well as high spatial overlap between the regions-of-interest (ROIs) generated from the two methods. The mean spatial overlap +/- standard deviation (defined by the intersection of the 2 ROIs divided by the union of the 2 ROIs) was equal to 0.873 +/- 0.0234. The algorithm has been incorporated into a public domain software program written in Java and, thus, has the potential to be of broad benefit to neuroimaging investigators interested in basal ganglia anatomy and function.
Inverted indexing is a popular non-exhaustive solution to large scale search. An inverted file is built by a quantizer such as k-means or a tree structure. It has been found that multiple inverted files, obtained by multiple independent random quantizers, are able to achieve practically good recall and speed.Instead of computing the multiple quantizers independently, we present a method that creates them jointly. Our method jointly optimizes all codewords in all quantizers. Then it assigns these codewords to the quantizers. In experiments this method shows significant improvement over various existing methods that use multiple independent quantizers. On the one-billion set of SIFT vectors, our method is faster and more accurate than a recent state-of-the-art inverted indexing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.