As a structural interference, spoofing is difficult to detect by the target receiver while the advent of a repeater makes the implementation of spoofing much easier. Most existing anti-spoofing methods are merely capable of detecting the spoofing, i.e., they cannot effectively remove counterfeit signals. Therefore, based on the similarities between multipath and spoofing, the feasibility of applying multipath mitigation methods to anti-spoofing is first analyzed in this paper. We then propose a novel algorithm based on maximum likelihood (ML) estimation to resolve this problem. The tracking channels with multi-correlators are constructed and a set of corresponding steps of detecting and removing the counterfeit signals is designed to ensure that the receiver locks the authentic signals in the presence of spoofing. Finally, the spoofing is successfully executed with a software receiver and the saved intermediate frequency (IF) signals, on this basis, the effectiveness of the proposed algorithm is verified by experiments.
Database-referenced navigation (DBRN) using geophysical information is often implemented on autonomous underwater vehicles (AUVs) to correct the positional errors of the inertial navigation system (INS). The matching algorithm is a pivotal technique in DBRN. However, it is impossible to completely eliminate mismatches in practical application. Therefore, it is necessary to perform a mismatch detection method on the outputs of DBRN. In this paper, we propose a real-time triple constraint mismatch detection method. The proposed detection method is divided into three modules: the model fitting detection module, the spatial structure detection module, and the distance ratio detection module. In the model fitting detection module, the navigation characteristics of AUVs are used to select the fitting model. In the spatial structure detection module, the proposed method performs the mismatch detection based on the affine transformation relationship between the INS-indicated trajectory and the corresponding matched trajectory. In the distance ratio detection module, we derive the distance ratio constraint between the INS-indicated trajectory and the corresponding matched trajectory. Simulations based on an actual geomagnetic anomaly base map have been performed for the validation of the proposed method.
For nonlinear systems in which the measurement noise parameters vary over time, adaptive nonlinear filters can be applied to precisely estimate the states of systems. The expectation maximization (EM) algorithm, which alternately takes an expectation- (E-) step and a maximization- (M-) step, has been proposed to construct a theoretical framework for the adaptive nonlinear filters. Previous adaptive nonlinear filters based on the EM employ analytical algorithms to develop the two steps, but they cannot achieve high filtering accuracy because the strong nonlinearity of systems may invalidate the Gaussian assumption of the state distribution. In this paper, we propose an EM-based adaptive nonlinear filter APF to solve this problem. In the E-step, an improved particle filter PF_new is proposed based on the Gaussian sum approximation (GSA) and the Monte Carlo Markov chain (MCMC) to achieve the state estimation. In the M-step, the particle swarm optimization (PSO) is applied to estimate the measurement noise parameters. The performances of the proposed algorithm are illustrated in the simulations with Lorenz 63 model and in a semiphysical experiment of the initial alignment of the strapdown inertial navigation system (SINS) in large misalignment angles.
As the main bearing components of double-arch tunnels, the stability of the middle wall is related to the construction safety of double-arch tunnels during construction and operation. Different construction methods of double-arch tunnel have great influence on the stability of middle wall, especially when the excavation span is large and the buried depth is very shallow. Based on an ultra-shallowly buried double-arch tunnel with extra-large spans in Xiamen, China, the mechanical response and deformation law of the middle wall are obtained. Furthermore, the performance of the CRD method and the double-side-drift method for optimizing the deformation and stress state of the middle wall are compared. The results can serve as initial guidelines for the for the selection of double-arch tunnel construction schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.