Abstract:Although YOLOv2 approach is extremely fast on object detection; its backbone network has the low ability on feature extraction and fails to make full use of multi-scale local region features, which restricts the improvement of object detection accuracy. Therefore, this paper proposed a DC-SPP-YOLO (Dense Connection and Spatial Pyramid Pooling Based YOLO) approach for ameliorating the object detection accuracy of YOLOv2. Specifically, the dense connection of convolution layers is employed in the backbone network of YOLOv2 to strengthen the feature extraction and alleviate the vanishing-gradient problem. Moreover, an improved spatial pyramid pooling is introduced to pool and concatenate the multi-scale local region features, so that the network can learn the object features more comprehensively. The DC-SPP-YOLO model is established and trained based on a new loss function composed of mean square error and cross entropy, and the object detection is realized. Experiments demonstrate that the mAP (mean Average Precision) of DC-SPP-YOLO proposed on PASCAL VOC datasets and UA-DETRAC datasets is higher than that of YOLOv2; the object detection accuracy of DC-SPP-YOLO is superior to YOLOv2 by strengthening feature extraction and using the multi-scale local region features.
a b s t r a c tNumerous effort s have been devoted to investigating the network activities and dynamics of isolated networks. Nevertheless, in practice, most complex networks might be interconnected with each other (due to the existence of common components) and exhibit layered properties while the connections on different layers represent various relationships. These types of networks are characterized as multiplex networks. A two-layered multiplex network model (usually composed of a virtual layer sustaining unaware-awareunaware (UAU) dynamics and a physical one supporting susceptible-infected-recovereddead (SIRD) process) is presented to investigate the spreading property of fatal epidemics in this manuscript. Due to the incorporation of the virtual layer, the recovered and dead individuals seem to play different roles in affecting the epidemic spreading process. In details, the corresponding nodes on the virtual layer for the recovered individuals are capable of transmitting information to other individuals, while the corresponding nodes for the dead individuals (which are to be eliminated) on the virtual layer should be removed as well. With the coupled UAU-SIRD model, the relationships between the focused variables and parameters of the epidemic are studied thoroughly. As indicated by the results, the range of affected individuals will be reduced by a large amount with the incorporation of virtual layers. Furthermore, the effects of recovery time on the epidemic spreading process are also investigated aiming to consider various physical conditions. Theoretical analyses are also derived for scenarios with and without required time periods for recovery which validates the reducing effects of incorporating virtual layers on the epidemic spreading process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.