Hydrocyclones are centrifugal devices used to perform the separation of a discrete phase (solid or liquid) from a continuous one. Depending on the process goal, particle classification, or thickening, it is possible to enhance the performance of these devices by optimizing their geometric relationships. In this study, innovative geometric relationships for a hydrocyclone were proposed to maximize the separation efficiency and provide low energy consumption. A database composed of 60 hydrocyclones with different geometric dimensions designed over 17 years of research at our laboratory was used to perform this study. Regression equations were adjusted to these previous experimental data, and a differential evolution algorithm was used in the optimization study. The optimized geometry of the hydrocyclone obtained in this work, named MOEH (maximum overall efficiency hydrocyclone), was built, and its performance was compared with the best equipment of the database through numerical simulation and experiments. The results indicated that for fine particles (D 63.2 = 10.80 μm), the MOEH showed better performance than all devices already analyzed by our research group, with an overall efficiency of approximately 9% higher and a 33% reduction of energy consumption when compared with the best hydrocyclone of the database.
Hydrocyclones are equipment typically used in solid-liquid separation. Such equipment can be used with the purpose of classifying particles or concentrating suspensions. In this context, a new filtering hydrocyclone was conceived through Surface Response and Differential Evolution Algorithm techniques in order to optimize the Euler’s number. Based on this optimized geometry, the aim of the present paper was to verify the influence of the underflow diameter on the overall separation process at 147 kPa on the same optimized hydrocyclone geometry, but without the filtration effect, by performing laboratory experiments and CFD simulations using the commercial software Fluent®. The results showed that the use of the smallest underflow diameter increased up to 44% (v/v) the concentration of the underflow stream, compared to the suspension initially fed, with an Euler’s number of 862. Despite a small decrease (14%) in the total efficiency and an increase from 12.01 to 16.05 of the reduced cut size diameter, compared to the underflow diameter originally used in the optimization procedure, the benefits of recovering liquid by reducing the underflow diameter outweigh these disadvantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.