The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract-In this paper, joint resource allocation and power control for energy efficient device-to-device (D2D) communications underlaying cellular networks are investigated. The resource and power are optimized for maximization of the energy efficiency (EE) of D2D communications. Exploiting the properties of fractional programming, we transform the original nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form. Then, an efficient iterative resource allocation and power control scheme is proposed. In each iteration, part of the constraints of the EE optimization problem is removed by exploiting the penalty function approach. We further propose a novel two-layer approach which allows to find the optimum at each iteration by decoupling the EE optimization problem of joint resource allocation and power control into two separate steps. In the first layer, the optimal power values are obtained by solving a series of maximization problems through root-finding with or without considering the loss of cellular users' rates. In the second layer, the formulated optimization problem belongs to a classical resource allocation problem with single allocation format which admits a network flow formulation so that it can be solved to optimality. Simulation results demonstrate the remarkable improvements in terms of EE by using the proposed iterative resource allocation and power control scheme.
In this paper, the edge caching problem in fog radio access network (F-RAN) is investigated. By maximizing the overall cache hit rate, the edge caching optimization problem is formulated to find the optimal policy. Content popularity in terms of time and space is considered from the perspective of regional users. We propose an online content popularity prediction algorithm by leveraging the content features and user preferences, and an offline user preference learning algorithm by using the online gradient descent (OGD) method and the follow the (proximally) regularized leader (FTRL-Proximal) method. Our proposed edge caching policy not only can promptly predict the future content popularity in an online fashion with low complexity, but also can track the content popularity with spatial and temporal popularity dynamic in time without delay. Furthermore, we design two learning based edge caching architectures. Moreover, we theoretically derive the upper bound of the popularity prediction error, the lower bound of the cache hit rate, and the regret bound of the overall cache hit rate of our proposed edge caching policy. Simulation results show that the overall cache hit rate of our proposed policy is superior to those of the traditional policies and asymptotically approaches the optimal performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.