Background Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. Results Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. Conclusions This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding.
Background: Balanced reciprocal translocation is one of the most common chromosomal abnormalities in humans that may lead to infertility, recurrent pregnancy loss, or having children with physical or mental abnormalities.Karyotyping and FISH are traditional detection approaches with a low resolution.Bionano optical genome mapping (OGM) developed in recent years can be used to analyze chromosomal abnormalities at a higher resolution, providing the possibility of more in-depth analyses of balanced chromosome translocations. Methods:To evaluate the feasibility of OGM to detect chromosome balanced translocations, 10 genetic outpatients were collected and detected simultaneously by karyotype analysis, FISH, CNV-seq, and Bionano OGM in this study. Results:The results showed that the karyotypes of the patients were detected by karyotype analysis, FISH, and Bionano OGM, but one patient with karyotype t (Y,19) was not correctly detected by OGM. There were not find any chromosome abnormality by CNV-seq. More importantly, OGM allowed the location of the mutation to the gene level, which is important for aiding diagnoses, compared to karyotype analysis, and FISH. Conclusions:This study shows that OGM can be a high adjunctive diagnostic method for detecting balanced chromosome translocations, but the accuracy and precision of OGM detecting mutations need to be gradually improved in telomere and centromere regions.
Brassica oleracea includes several morphologically diverse, economically important vegetable crops. Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~120 K high-confidence structural variants (SVs). Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.