This paper presents a novel fuzzy control scheme for damping the subsynchronous resonance (SSR) according to the wide-area measurement system (WAMS) in power systems including doubly fed induction generator (DFIG)-based wind farms connected to series capacitive compensated transmission networks. The SSR damping is attained by adding the fuzzy controller as a supplementary signal at the stator voltage loop of the grid-side converter (GSC) of DFIG wind farms. Additionally, time delays due to communication signals are important when using WAMSs. If the time delays are ignored, it causes system instability. In this paper, the time delays are modeled with a separate fuzzy input to the controller. The new fuzzy control approach is executed by using the angular velocity of synchronous generators (w) and its variation in the angular velocity (dw/dt). The effectiveness and success of the WAMS-based fuzzy controller is demonstrated by comparison with the particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) optimization methods. The efficacy and validity of the planned auxiliary damping control are verified on a modified version of the IEEE second benchmark model including DFIG-based wind farms via time simulations using the MATLAB/Simulink toolbox.
In this paper, extended Kalman filter (EKF) isused for online optimization of input and output membershipfunctions (MFs) of Mamdani fuzzy PID controller. Theproposed controller is employed for controlling the separatelyexcited DC motor. The simulation results show that the fuzzyPID controller with online optimization has better efficiencythan classic PID controller and fuzzy PID controller with fixedmembership functions
This paper proposes an auxiliary damping control approach based on the wide-area measurement system (WAMS). Its main objective is to mitigate sub-synchronous resonance (SSR) in doubly fed induction generator (DFIG)-based wind farms connected to a series capacitive compensated transmission network. To mitigate the delay in sending measurement signals, typically associated with wide-area measurement systems, a fuzzy logic wide-area damping controller (FLWADC) is considered to mitigate the time delay caused by the phasor measurement unit (PMU) measurement. The FLWADC is a supplementary signal at the stator voltage of the grid-side converter (GSC) of the DFIG-based wind farms. The FLWADC was executed by using the voltage and capacitor voltage variations of the series capacitive compensated transmission network. The effectiveness and validity of the proposed auxiliary damping control was verified using a modified scheme of the IEEE first benchmark model via time-area simulation analysis using MATLAB/Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.