We performed stacking experiments on Si dies using annular tungsten TSVs (Through Silicon Vias) and Cu studs with low-volume solder micro-bumps. Unlike standard 100-micron C4 (Controlled Collapse Chip Connection) solder balls, very small solder volumes (< 6 microns in height) form IMC (InterMetallic Compounds) in the junctions during the bonding or reflow processes. The two interconnect metallurgies of Cu/Ni/In and Cu/Sn joints were considered for low-volume lead-free solder micro-bumps for 3D integration. A previous study on these metallurgies [5] showed that the Cu/Sn joints form thermally stable intermetallics while in the Cu/Ni/In joints, some indium solder remains unreacted due to the presence of the Ni barriers. The shear testing on the stacked systems showed that the die stacks with Cu/Sn joints exhibit higher shear strengths than those with Cu/Ni/In joints. However the impact shock testing on the systems revealed that the die stacks with Cu/Sn joints are less resistant to mechanical shocks than the systems with Cu/Ni/In joints. This new work focuses on thermal cycle testing of the die stack systems with the Cu/Ni/In and Cu/Sn interconnections. Preliminary thermal cycle testing on the die stack systems with Cu/Ni/In joints showed that the joints are stable against thermal cycle stresses for thousands of cycles. To quickly compare the systems with two metallurgies, we mounted the Si die stacks onto organic substrates to impose additional stresses on the systems. In addition to standard DTC (Deep Thermal Cycle) tests, we also conducted a HAATS (Highly accelerated Air to Air Thermal Shock) test [23] with a short cycle time to reduce the testing time. The DTC and HAATS tests showed that the stacked systems with Cu/Ni/In joints had fewer failures and smaller increases in the electrical resistances of the joints during the tests than the systems with Cu/Sn joints.
PoP structures have been used widely in digital consumer electronics products such as digital still cameras and mobile phones. However, the final stack height from the top to the bottom package for these structures is higher than that of the current stacked die packages. To reduce the height of the package, a flip chip technology is used. Since the logic chips of mobile applications use a pad pitch of less than 80 μm or less, an ultra-fine-pitch flip chip interconnection technique is required. C4 flip chip technology is widely used in area array flip chip packages, but it is not suitable in the ultrafine-pitch flip chips because the C4 solder bumps melt and collapse on the wide opening Cu pads. Although the industry uses ultrafine-pitch interconnections between Au stud bumps on a chip and Sn/Ag pre-solder on a carrier, this flip chip technique has two major problems. One is that the need for bumps on both die and carrier drives up material costs. The other is that the long bonding process time required in the individual flip chip bonding process with associated heating and cooling steps demands large investments in equipment.To address these problems, we developed the mount and reflow with no-clean flux processes, and new interconnection techniques were developed with Cu pillars and Sn/Ag solder bumps on Al pads for wirebonding, were developed. It is very easy to control the gap between die and substrate by adjusting the Cu pillar height. Since it is unnecessary to control the collapse of the solder bumps, we call this the C2 process for direct Chip Connection (C2). The C2 bumps are connected to Cu substrate pads, which are a surface treated with OSP (Organic Solder Preservative), with reflow and no-clean processes. This technology creates the SMT/Flip Chip hybrid assembly for SoP (System on Package) use. We have produced 50 μm-pitch C2 interconnections and tested their reliability. The interconnection resistance increase caused by the reliability testing is quite small. It is clear that C2 flip chip technology provides robust solder connections at low cost. Also the C2 structure with a low-k device was evaluated and no failures were observed at 1,500 cycles in the thermal cycle test. This indicates that low-k C2 structures seem robust. For finer pitch flip chip interconnections, a wafer-level underfill process is needed to overcome the limitations of the standard capillary underfill process for ultra-narrow spaces. To date, a wafer-level underfill process exists for the C2 process with an 80-μm pitch. In addition to fine pitch interconnections, a die thickness of 70 μm is required to reduce the final stack height. Such thin die cannot be processed by the C2 process because such dies slip too easily during the reflow process. To resolve this issue, a Post-Encapsulation Grinding (PEG) method was developed. In this method the die is ground to less than 70 μm after joining and underfilling. This report presents the PEG method and reliability test results for die thicknesses 20 μm, 70 μm and 150 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.