The resorcinol–octadecanal cyclotetramer 1 forms an ion channel in planar lipid bilayers. A stable conductance level is observed with well‐defined transitions between open and closed states. The channel discriminates K+ from Na+ ions as well as cations from anions (for example, K+ from Cl−), as indicated by permeability ratios of 3 and 20, respectively. Rb+ ions block the K+ ion current.
Dehydrins are hydrophilic proteins that accumulate during embryogenesis and osmotic stress responses in plants. Here, we report an interaction between citrus dehydrin Citrus unshiu cold-regulated 15 kDa protein (CuCOR15) and DNA. Binding of CuCOR15 to DNA was detected by an electrophoretic mobility shift assay, a filter-binding assay and Southwestern blotting. The binding was stimulated by physiological concentrations of Zn2+, but little stimulation occurred when other divalent cations, such as Mg2+, Ca2+, Mn2+, Ni2+ and Cu2+, were substituted for Zn2+. Ethylenediaminetetraacetic acid cancelled the Zn2+-stimulated binding. A binding curve and competitor experiments suggested that the DNA binding of CuCOR15 exhibited low affinity and non-specificity. Moreover, tRNA competed with the DNA binding. Histidine-rich domains and a polylysine segment-containing domain participated in the DNA binding. These results suggest that CuCOR15 can interact with DNA, and also RNA, in the presence of Zn2+. Dehydrin may protect nucleic acids in plant cells during seed maturation and stress responses.
A family of tridendate ligands 1 a-e, based on the 2-aryl-4,6-di(2-pyridyl)-s-triazine motif, was prepared along with their hetero- and homoleptic Ru(II) complexes 2 a-e ([Ru(tpy)(1 a-e)](2+); tpy=2,2':6',2"-terpyridine) and 3 a-e ([(Ru(1 a-e)(2)](2+)), respectively. The ligands and their complexes were characterized by (1)H NMR spectroscopy, ES-MS, and elemental analysis. Single-crystal X-ray analysis of 2 a and 2 e demonstrated that the triazine core is nearly coplanar with the non-coordinating ring, with dihedral angles of 1.2 and 18.6 degrees, respectively. The redox behavior and electronic absorption and luminescence properties (both at room temperature in liquid acetonitrile and at 77 K in butyronitrile rigid matrix) were investigated. Each species undergoes one oxidation process centered on the metal ion, and several (three for 2 a-e and four for 3 a-e) reduction processes centered on the ligand orbitals. All compounds exhibit intense absorption bands in the UV region, assigned to spin-allowed ligand-centered (LC) transitions, and moderately intense spin-allowed metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region. The compounds exhibit relatively intense emissions, originating from triplet MLCT levels, both at 77 K and at room temperature. The incorporation of triazine rings and the near planarity of the noncoordinating ring increase the luminescence lifetimes of the complexes by lowering the energy of the (3)MLCT state and creating a large energy gap to the dd state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.