The kallikrein-kinin system has been shown to be involved in the development of diabetic nephropathy, but specific mechanisms are not fully understood. Here, we determined the renal-protective role of exogenous pancreatic kallikrein in diabetic mice and studied potential mechanisms in db/db type 2 diabetic and streptozotocin-induced type 1 diabetic mice. After the onset of diabetes, mice were treated with either pancreatic kallikrein (db/db+kallikrein, streptozotocin+kallikrein) or saline (db/db+saline, streptozotocin+saline) for 16 weeks, while another group of streptozotocin-induced diabetic mice received the same treatment after onset of albuminuria (streptozotocin'+kallikrein, streptozotocin'+saline). Db/m littermates or wild type mice were used as non-diabetic controls. Pancreatic kallikrein had no effects on body weight, blood glucose and blood pressure, but significantly reduced albuminuria among all three groups. Pathological analysis showed that exogenous kallikrein decreased the thickness of the glomerular basement membrane, protected against the effacement of foot process, the loss of endothelial fenestrae, and prevented the loss of podocytes in diabetic mice. Renal fibrosis, inflammation and oxidative stress were reduced in kallikrein-treated mice compared to diabetic controls. The expression of kininogen1, tissue kallikrein, kinin B1 and B2 receptors were all increased in the kallikrein-treated compared to saline-treated mice. Thus, exogenous pancreatic kallikrein both prevented and ameliorated diabetic nephropathy, which may be mediated by activating the kallikrein-kinin system.
Spironolactone (SPR) has been shown to protect diabetic cardiomyopathy (DCM), but the specific mechanisms are not fully understood. Here, we determined the cardioprotective role of SPR in diabetic mice and further explored the potential mechanisms in both in vivo and in vitro models. Streptozotocin- (STZ-) induced diabetic rats were used as the in vivo model. After the onset of diabetes, rats were treated with either SPR (STZ + SPR) or saline (STZ + NS) for 12 weeks; nondiabetic rats were used as controls (NDCs). In vitro, H9C2 cells were exposed to aldosterone, with or without SPR. Cardiac structure was investigated with transmission electron microscopy and pathological examination; immunohistochemistry was performed to detect nitrotyrosine, collagen-1, TGF-β1, TNF-α, and F4/80 expression; and gene expression of markers for oxidative stress, inflammation, fibrosis, and energy metabolism was detected. Our results suggested that SPR attenuated mitochondrial morphological abnormalities and sarcoplasmic reticulum enlargement in diabetic rats. Compared to the STZ + NS group, cardiac oxidative stress, fibrosis, inflammation, and mitochondrial dysfunction were improved by SPR treatment. Our study showed that SPR had cardioprotective effects in diabetic rats by ameliorating mitochondrial dysfunction and reducing fibrosis, oxidative stress, and inflammation. This study, for the first time, indicates that SPR might be a potential treatment for DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.