The aim of the study was to assess the occurrence and distribution of organophosphate compounds residue in soil, surface water, sediment, and banana crops in Araromi farm settlement, Osun State, Nigeria. Organophosphate pesticide residues were determined using a gas chromatography equipped with Flame-Ionization Detection (GC-FID) in 16 soil samples from cocoa and banana farms, 6 water and sediment samples each, and 8 banana samples from 4 farms in the study site. Fourteen organophosphate compounds were detected (acephate, omethoate, dementon-s-methyl, dimethoate, tolcofos-methyl, pirimiphos-methyl, malathion, chlorpyrifos, methidathion, prothiofos, profenofos, ethion, azinphos-methyl and pyrazophos). Tolclofos-methyl, pirimiphos-methyl and prothiofos were detected in all the soil and sediment samples with concentration ranges of 1.9-12.9, 2.25-6.98 and 3.38-9.89 mg/kg respectively in soil and 8.13-9.83, 2.82-25.1 and 3.70-19.5 mg/kg respectively in sediment. Dimethoate, pirimiphos-methyl and prothiofos with concentration ranges, 0.06-0.28, 0.09-0.18 and 0.16-6.11 mg/L respectively were mostly detected in water samples while dimethoate, tolcofos-methyl, malathion, methidathion, prothiofos, ethion and azinphos-methyl compounds were detected in all the banana samples with concentration ranges, 3.40-12.0, 1.82-6.26, 5.73-9.48, 29.7-145, 8.24-20.1, 3.87-9.35 and 3.66-12.2 mg/kg respectively. The organophosphate mean residue concentrations were mostly significantly higher than the Maximum Residue Limits (MRL) at p<0.05. Across the three samples, only pirimiphos-methyl was significantly higher in water samples, omethoate in sediment; acephate, dementon-s-methyl and chlorpyrifos in banana were also not significantly higher at p<0.05. A strong positive significant correlation was observed between the organophosphate compounds in the banana and water samples (R=0.77, p=0.002) at p<0.05. The occurrence of organophosphate compounds in concentrations above MRLs may pose serious environmental and health risks.
The aim of the study was to assess the occurrence and distribution of organophosphate compounds residue in soil, surface water, sediment, and banana crops in Araromi farm settlement, Osun State, Nigeria. Organophosphate pesticide residues were determined using a gas chromatography equipped with Flame-Ionization Detection (GC-FID) in 16 soil samples from cocoa and banana farms, 6 water and sediment samples each, and 8 banana samples from 4 farms in the study site. Fourteen organophosphate compounds were detected (acephate, omethoate, dementon-s-methyl, dimethoate, tolcofos-methyl, pirimiphos-methyl, malathion, chlorpyrifos, methidathion, prothiofos, profenofos, ethion, azinphos-methyl and pyrazophos). Tolclofos-methyl, pirimiphos-methyl and prothiofos were detected in all the soil and sediment samples with concentration ranges of 1.9-12.9, 2.25-6.98 and 3.38-9.89 mg/kg respectively in soil and 8.13-9.83, 2.82-25.1 and 3.70-19.5 mg/kg respectively in sediment. Dimethoate, pirimiphos-methyl and prothiofos with concentration ranges, 0.06-0.28, 0.09-0.18 and 0.16-6.11 mg/L respectively were mostly detected in water samples while dimethoate, tolcofos-methyl, malathion, methidathion, prothiofos, ethion and azinphos-methyl compounds were detected in all the banana samples with concentration ranges, 3.40-12.0, 1.82-6.26, 5.73-9.48, 29.7-145, 8.24-20.1, 3.87-9.35 and 3.66-12.2 mg/kg respectively. The organophosphate mean residue concentrations were mostly significantly higher than the Maximum Residue Limits (MRL) at p<0.05. Across the three samples, only pirimiphos-methyl was significantly higher in water samples, omethoate in sediment; acephate, dementon-s-methyl and chlorpyrifos in banana were also not significantly higher at p<0.05. A strong positive significant correlation was observed between the organophosphate compounds in the banana and water samples (R=0.77, p=0.002) at p<0.05. The occurrence of organophosphate compounds in concentrations above MRLs may pose serious environmental and health risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.