Copper amine oxidase contains a post-translationally generated quinone cofactor, topa quinone (TPQ), which mediates electron transfer from the amine substrate to molecular oxygen. The overall catalytic reaction is divided into the former reductive and the latter oxidative half-reactions based on the redox state of TPQ. In the reductive half-reaction, substrate amine reacts with the C5 carbonyl group of the oxidized TPQ, forming the substrate Schiff base (TPQ(ssb)), which is then converted to the product Schiff base (TPQ(psb)). During this step, an invariant Asp residue with an elevated pKa is presumed to serve as a general base accepting the alpha proton of the substrate. When Asp298, the putative active-site base in the recombinant enzyme from Arthrobacter globiformis, was mutated into Ala, the catalytic efficiency dropped to a level of about 10(6) orders of magnitude smaller than the wild-type (WT) enzyme, consistent with the essentiality of Asp298. Global analysis of the slow UV/vis spectral changes observed during the reductive half-reaction of the D298A mutant with 2-phenylethylamine provided apparent rate constants for the formation and decay of TPQ(ssb) (k(obs) = 4.7 and 4.8 x 10(-4) s(-1), respectively), both of which are markedly smaller than those of the WT enzyme determined by rapid-scan stopped-flow analysis (k(obs) = 699 and 411 s(-1), respectively). Thus, Asp298 plays important roles not only in the alpha-proton abstraction from TPQ(ssb) but also in other steps in the reductive half-reaction. X-ray diffraction analyses of D298A crystals soaked with the substrate for 1 h and 1 week revealed the structures of TPQ(ssb) and TPQ(psb), respectively, as pre-assigned by single-crystal microspectrophotometry. Consistent with the stereospecificity of alpha-proton abstraction, the pro-S alpha-proton of TPQ(ssb) to be abstracted is positioned nearly perpendicularly to the plane formed by the Schiff-base imine double bond conjugating with the quinone ring of TPQ, so that the orbitals of sigma and pi electrons maximally overlap in the conjugate system. More intriguingly, the pro-S alpha proton of the substrate is released stereospecifically even in the reaction catalyzed by the base-lacking D298A mutant. On the basis of these results, we propose that the stereospecificity of alpha-proton abstraction is primarily determined by the conformation of TPQ(ssb), rather than the relative geometry of TPQ and the catalytic base.
The topa quinone (TPQ) cofactor of copper amine oxidase is generated by copper-assisted self-processing of the precursor protein. Metal ion specificity for TPQ biogenesis has been reinvestigated with the recombinant phenylethylamine oxidase from Arthrobacter globiformis. Besides Cu2+ ion, some divalent metal ions such as Co2+, Ni2+, and Zn2+ were also bound to the metal site of the apoenzyme so tightly that they were not replaced by excess Cu2+ ions added subsequently. Although these noncupric metal ions could not initiate TPQ formation under the atmospheric conditions, we observed slow spectral changes in the enzyme bound with Co2+ or Ni2+ ion under the dioxygen-saturating conditions. Resonance Raman spectroscopy and titration with phenylhydrazine provided unambiguous evidence for TPQ formation by Co2+ and Ni2+ ions. Steady-state kinetic analysis showed that the enzymes activated by Co2+ and Ni2+ ions were indistinguishable from the corresponding metal-substituted enzymes prepared from the native copper enzyme (Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Tanizawa, K., and Mure, M. (2003) J. Am. Chem. Soc. 125, 1041-1055). X-ray crystallographic analysis has also revealed structural identity of the active sites of Co- and Ni-activated enzymes with Cu-enzyme. Thus Cu2+ ion is not the sole metal ion assisting TPQ formation. Co2+ and Ni2+ ions are also capable of forming TPQ, though much less efficiently than Cu2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.