Perovskite solar cells (PSCs) have become one of the most promising renewable energy converting devices. However, in order to reach a sufficiently high power conversion efficiency (PCE), the PSCs typically require a high‐temperature sintering process to prepare mesostructured TiO2 as an efficient electron transport layer (ETL), which prohibits the PSCs from commercialization in the future. This work investigates a low‐temperature synthesis of TiO2 nanocrystals and introduces a two‐fluid spray coating process to produce a nanostructured ETL for the following deposition of perovskite layer. The temperature during the whole deposition process can be maintained under 150 °C. Compared to the typical planar TiO2 layer, the perovskite layer fabricated on a nanostructured TiO2 layer shows uniform compactness, preferred orientation, and high crystallinity, leading to reproducible and promising device performance. The detail mechanisms are revealed by the contact angle test, morphology characterization, grazing incident wide angle X‐Ray scattering measurement, and space charge limited currents analysis. Finally, optimized device performance can be achieved through adequate Zn doping in the TiO2 layer, demonstrating an average PCE of 19.87% with champion PCE of 21.36%. The efficiency can maintain over 80% of its original value after 3000 h storage in ambient atmosphere. This study suggests a promising approach to offer high‐efficiency PSCs using the low‐temperature process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.