p-Benzoquinone (BQ) is a promising cathode material for lithium-ion batteries (LIBs) due to its high theoretical specific capacity and voltage. However, it suffers from a serious dissolution problem in organic electrolytes, leading to poor electrochemical performance. Herein, two BQ-derived molecules with a near-plane structure and relative large skeleton: 1,4-bis(p-benzoquinonyl)benzene (BBQB) and 1,3,5-tris(p-benzoquinonyl)benzene (TBQB) are designed and synthesized. They show greatly decreased solubility as a result of strong intermolecular interactions. As cathode materials for LIBs, they exhibit high carbonyl utilizations of 100% with high initial capacities of 367 and 397 mAh g −1 , respectively. Especially, BBQB with better planarity presents remarkably improved cyclability, retaining a high capacity of 306 mAh g −1 after 100 cycles. The cycling stability of BBQB surpasses all reported BQ-derived small molecules and most polymers. This work provides a new molecular structure design strategy to suppress the dissolution of organic electrode materials for achieving high performance rechargeable batteries.
Molecular structure and electrode architecture play very important roles in electrochemical performance of polymer electrode materials for lithium-ion batteries. Here, a series of anthraquinone-containing polymers with linear (with different molecular weights (MWs)) or cross-linked polymer structures were synthesized by (living) ring-opening metatheses (co)polymerization method. The influences of the molecular structures and electrode preparation process on the architectures and electrochemical performance of polymer electrodes were systematically investigated. It was found that the low MW linear polymers suffer from severe dissolution and thus result in low initial capacity and poor cycling stability. Under optimized electrode preparation process, high MW linear polymers can be uniformly composited with conductive additives and binders and deliver stable cycling performance. Cross-linked polymer shows significantly reduced solubility but a severe aggregation problem, leading to very poor electrochemical performance. Our findings shed light on the molecular structure design and electrode preparation process of polymer electrode materials for high-performance rechargeable batteries.
Organic electrode materials free of rare transition metal elements are promising for sustainable, cost‐effective, and environmentally benign battery chemistries. However, severe shuttling effect caused by the dissolution of active materials in liquid electrolytes results in fast capacity decay, limiting their practical applications. Here, using a gel polymer electrolyte (GPE) that is in situ formed on Nafion‐coated separators, the shuttle reaction of organic electrodes is eliminated while maintaining the electrochemical performance. The synergy of physical confinement by GPE with tunable polymer structure and charge repulsion of the Nafion‐coated separator substantially prevents the soluble organic electrode materials with different molecular sizes from shuttling. A soluble small‐molecule organic electrode material of 1,3,5‐tri(9,10‐anthraquinonyl)benzene demonstrates exceptional electrochemical performance with an ultra‐long cycle life of 10 000 cycles, excellent rate capability of 203 mAh g−1 at 100 C, and a wide working temperature range from −70 to 100 °C based on the solid–liquid conversion chemistry, which outperforms all previously reported organic cathode materials. The shielding capability of GPE can be designed and tailored toward organic electrodes with different molecular sizes, thus providing a universal resolution to the shuttling effect that all soluble electrode materials suffer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.