Toll-like receptor 4 (TLR-4) is well known for its host innate immunity. Despite the fact that TLR-4 activation confers antitumor responses; emerging evidence suggests that TLR-4 is associated with tumor development and progression. It is now clear that overactivation of TLR-4, through various immune mediators, may cause immune response dysfunction, resulting in tumorigenesis. Different cancers could have different extents of TLR-4 involvement during tumorigenesis or tumor progression. In this review, we focus on infection- and inflammation-related TLR-4 activation in noncancer and cancer cells, as well as on the current evidence about the role of TLR-4 in ten of the most common cancers, viz, head and neck cancer, lung cancer, gastrointestinal cancer, liver cancer, pancreatic cancer, skin cancer, breast cancer, ovarian cancer, cervical cancer, and prostate cancer.
The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol
®
ATO 5 and Transcutol
®
HP were selected as the lipid phase, and Tween
®
80 and Solutol
®
HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, −18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.
Dilithium phenylphosphide reacts with 1,3-dichloropropane or
1,2-dichloroethane to give
1-phenylphosphetane (1) or 1-phenylphosphirane
(2), respectively, both of which can be
isolated by distillation in vacuo. The phosphetane rapidly
polymerizes when neat but is
stable in benzene wherefrom the polymer can be selectively and
quantitatively separated
from 1 by the addition of
trans-dichlorobis(diethyl
sulfide)palladium(II). Four-membered
1
has a remarkably low-field 31P NMR chemical shift (13.9
ppm), and 2, a remarkably high-field shift (−236 ppm). The crystal and molecular structures of
the potential cyclotrimerization precursor complexes
fac-[Mo(CO)3(1)3]
(7),
fac-[Mo(CO)3(2)3]
(8), and
[(η5-C5H5)Fe(2)3]PF6 (9) have
been determined. Both molybdenum complexes have
C
3 symmetry in the
solid state, and the iron complex has C
1
symmetry. An interesting feature of the three
structures is that the phenyl groups of the small phosphorus
heterocycles in each case are
arranged in groups of three syn or anti to the auxiliary ligands.
Being biodegradable and biocompatible are crucial characteristics for biomaterial used for medical and biomedical applications. Vegetable oil-based polyols are known to contribute both the biodegradability and biocompatibility of polyurethanes; however, petrochemical-based polyols were often incorporated to improve the thermal and mechanical properties of polyurethane. In this work, palm oil-based polyester polyol (PPP) derived from epoxidized palm olein and glutaric acid was reacted with isophorone diisocyanate to produce an aliphatic polyurethane, without the incorporation of any commercial petrochemical-based polyol. The effects of water content and isocyanate index were investigated. The polyurethanes produced consisted of > 90% porosity with interconnected micropores and macropores (37–1700 µm) and PU 1.0 possessed tensile strength and compression stress of 111 kPa and 64 kPa. The polyurethanes with comparable thermal stability, yet susceptible to enzymatic degradation with 7–59% of mass loss after 4 weeks of treatment. The polyurethanes demonstrated superior water uptake (up to 450%) and did not induce significant changes in pH of the medium. The chemical changes of the polyurethanes after enzymatic degradation were evaluated by FTIR and TGA analyses. The polyurethanes showed cell viability of 53.43% and 80.37% after 1 and 10 day(s) of cytotoxicity test; and cell adhesion and proliferation in cell adhesion test. The polyurethanes produced demonstrated its potential as biomaterial for soft tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.