Abstract:Islet transplantation is an attractive treatment of type 1 diabetes mellitus. Xenotransplantation, using the pig as a donor, offers the possibility of an unlimited supply of islet grafts. Published studies demonstrated that pig islets could function in diabetic primates for a long time (>6 months). However, pig-islet xenotransplantation must overcome the selection of an optimal pig donor to obtain an adequate supply of islets with high-quality, to reduce xenoantigenicity of islet and prolong xenograft survival, and to translate experimental findings into clinical application. This review discusses the suitable pig donor for islet xenotransplantation in terms of pig age, strain, structure/function of islet, and genetically modified pig.
Porous thin films containing very small closed pores (∼ 20 Å) with a low dielectric constant (∼ 2.0) and excellent mechanical properties have been prepared using the mixture of cyclic silsesquioxane (CSSQ) and a new porogen, heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (tCD). The pore sizes vary from 16.3 Å to 22.2 Å when the content of tCD in the coating mixture increases to 45 wt.‐% according to positronium annihilation lifetime spectroscopy (PALS) analysis. It has also been found that the pore percolation threshold (the onset of pore interconnectivity) occurs as the ∼ 50 % tCD porogen load. The dielectric constants (k = 2.4 ∼ 1.9) and refractive indices of these porous thin films decreased systematically as the amount of porogen loading increased in the coating mixture. The electrical properties and mechanical properties of such porous thin films were fairly good as interlayer dielectrics.
Abstract:The potential use of allogeneic islet transplantation in curing type 1 diabetes mellitus has been adequately demonstrated, but its large-scale application is limited by the short supply of donor islets and the need for sustained and heavy immunosuppressive therapy. Encapsulation of pig islets was therefore suggested with a view to providing a possible alternative source of islet grafts and avoiding chronic immunosuppression and associated adverse or toxic effects. Nevertheless, several vital elements should be taken into account before this therapy becomes a clinical reality, including cell sources, encapsulation approaches, and implantation sites. This paper provides a comprehensive review of xenotransplantation of encapsulated pig islets for the treatment of type 1 diabetes mellitus, including current research findings and suggestions for future studies.
Many cell responses that underlie the development, maturation, and function of tissues are guided by the architecture and mechanical loading of the extracellular matrix (ECM). Because mechanical stimulation must be transmitted through the ECM architecture, the synergy between these two factors is important. However, recapitulating the synergy of these physical microenvironmental cues in vitro remains challenging. To address this, a 3D magnetically actuated collagen hydrogel platform is developed that enables combined control of ECM architecture and mechanical stimulation. With this platform, it is demonstrated how these factors synergistically promote cell alignment of C2C12 myoblasts and enhance myogenesis. This promotion is driven in part by the dynamics of Yes‐associated protein and structure of cellular microtubule networks. This facile platform holds great promises for regulating cell behavior and fate, generating a broad range of engineered physiologically representative microtissues in vitro, and quantifying the mechanobiology underlying their functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.