Flavoprotein autofluorescence imaging, an intrinsic mitochondrial signal, has proven useful for monitoring neuronal activity. In the cerebellar cortex, parallel fiber stimulation evokes a beam-like response consisting of an initial, short-duration increase in fluorescence (on-beam light phase) followed by a longer duration decrease (on-beam dark phase). Also evoked are parasagittal bands of decreased fluorescence due to molecular layer inhibition. Previous work suggests that the on-beam light phase is due to oxidative metabolism in neurons. The present study further investigated the metabolic and cellular origins of the flavoprotein signal in vivo, testing the hypotheses that the dark phase is mediated by glia activation and the inhibitory bands reflect decreased flavoprotein oxidation and increased glycolysis in neurons. Blocking postsynaptic ionotropic and metabotropic glutamate receptors abolished the onbeam light phase and the parasagittal bands without altering the on-beam dark phase. Adding glutamate transporter blockers reduced the dark phase. Replacing glucose with lactate (or pyruvate) or adding lactate to the bathing media abolished the on-beam dark phase and reduced the inhibitory bands without affecting the light phase. Blocking monocarboxylate transporters eliminated the on-beam dark phase and increased the light phase. These results confirm that the on-beam light phase is due primarily to increased oxidative metabolism in neurons. They also show that the on-beam dark phase involves activation of glycolysis in glia resulting in the generation of lactate that is transferred to neurons. Oxidative savings in neurons contributes to the decrease in fluorescence characterizing the inhibitory bands. These findings provide strong in vivo support for the astrocyte–neuron lactate shuttle hypothesis.
CDK1 plays a comprehensive role in mediating genetic networks implicated in the progression of cervical cancer. Novel therapeutics targeting CDK1 or its related pathways might help improve prognosis of advanced stage cervical cancer.
Abstract-Orthogonal Frequency Division Multiple Access (OFDMA) systems commonly operate with a pseudo-random allocation of active sub-carriers to users. However, dynamic (multi-user) sub-carrier allocation (DSA) in an OFDMA system with a SISO channel has been investigated previously in [1,2]. In this paper, an alternative algorithm is proposed and evaluated. Simulation results identify gains of up to 10dB and show that near identical gain is achieved for all users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.