We have reinvestigated the molecular weight and subunit composition of calf thymus ribonuclease H1. Earlier studies suggested a variety of molecular weights for the enzyme in the range of 64K-84K and reported that the enzyme either was a single polypeptide of 74 kDa or consisted of from two to four subunits in the range of 21-34 kDa. Although we too find bands in this lower molecular weight range in our highly purified preparations following SDS-PAGE, our data suggest that the native structure of RNase H1 is a dimer of 68-kDa subunits. The evidence includes the following: (1) Western blot analysis of fractions taken at various stages of the purification indicates that the predominant antigenic form of the enzyme in crude extracts has a molecular weight of 68K but that during purification in the absence of sufficient protease inhibitors a variety of lower molecular weight forms appear concomitant with the disappearance of the 68-kDa band. (2) Activity gel analysis of the highly purified enzyme prepared in the presence of a battery of protease inhibitors reveals that the 68-kDa band (as well as several bands of lower molecular weight) possesses RNase H activity. (3) The 68-kDa band recognized by Western blotting with anti-RNase H immune sera is not detected by using preimmune sera. Furthermore, when immune sera are used, a trace of a 140-150-kDa antigenic form can sometimes be detected, consistent with the existence of a dimeric form of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Myo-Inositol tris pyrophosphate (ITPP) is a powerful allosteric modulator of haemoglobin that increases oxygen-releasing capacity of red blood cells. It is capable of crossing the red blood cell membrane unlike its open polyphosphate analog myo-inositol hexakisphosphate (IHP). Systemic administration of ITPP enhanced the exercise capacity in mice. There have been rumours of its abuse in the horse racing industry to enhance the performance of racing horses. In this paper, the detection of ITPP in equine plasma and urine after an administration of ITPP is reported. A Standardbred mare was administered 200 mg of ITPP intravenously. Urine and plasma samples were collected up to 120 h post administration and analyzed for ITPP by liquid chromatography-tandem mass spectrometry. ITPP was detected in post administration plasma samples up to 6 hours. The peak concentration was detected at 5 min post administration. In urine, ITPP was detected up to 24 h post administration. The peak concentration was detected at 1.5 h post administration.
International audienceUnder appropriate temperature conditions, natural gypsum CaSO4·2H2O, dispersed in an aqueous solution, turns into calcium hemihydrate CaSO4·½H2O. This transformation is performed in a 2 L stirred baffled reactor, where the temperature increase is measured and controlled on line. The water content of the suspension and its size distribution are measured on samples during the transformation. Experiments are achieved at nominal temperature of 140 °C, with three initial solid mass fractions 0.5, 0.33 and 0.25. The transformation takes place through a dissolution followed by re-crystallization. A model is proposed which takes into account the size distribution of the particles of gypsum, their dissolution rate, primary and secondary nucleation and growth rates of calcium hemihydrate. The set of equations is solved with a MATLAB software, which allows to test the assumptions on the kinetics of the transformation and fit their parameters. A satisfying representation of the variations of the extent of transformation and of volume and surface mean diameters of the suspension is obtained
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.