In the field of sensing, finding high-performance amine molecular sensors has always been a challenging topic. Here, two highly stable 3D MOFs DUT-67(Hf) and DUT-67(Zr) with large specific surface areas and hierarchical pore structures were conveniently synthesized by solvothermal reaction of ZrCl 4 /HfCl 4 with a simple organic ligand, 2,5-thiophene dicarboxylic acid (H 2 TDC) according to literature approach. By analyzing TGA data, it was found that the two MOFs have defects (unsaturated metal sites) that can interact with substrates (H 2 O and volatile amine gas), which is conducive to proton transfer and amine compound identification. Further experiments showed that at 100 °C and 98% relative humidity (RH), the optimized proton conductivities of DUT-67(Zr) and DUT-67(Hf) can reach the high values of 2.98 × 10 −3 and 3.86 × 10 −3 S cm −1 , respectively. Moreover, the room temperature sensing characteristics of MOFs' to amine gases were evaluated at 68, 85 and 98% RHs, respectively. Impressively, the prepared MOFs-based sensors have the desired stability and higher sensitivity to amines. Under 68% RH, the detection limits of DUT-67(Zr) or DUT-67(Hf) for volatile amine gases were 0.5 (methylamine), 0.5 (dimethylamine) and 1 ppm (trimethylamine), and 0.5 (methylamine), 0.5 (dimethylamine) and 0.5 ppm (trimethylamine), respectively. As far as we know, this is the best performance of ammonia room temperature sensors in the past proton-conductive MOF sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.