In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Autophagy, a conserved pathway for bulk cellular degradation and recycling in eukaryotes, regulates proper turnover of organelles, membranes and certain proteins. Such regulated degradation is important for cell growth and development, particularly during environmental stress conditions, which act as key inducers of autophagy. We found that autophagy and MoATG8 were significantly induced during asexual development in Magnaporthe oryzae. An RFP-tagged MoAtg8 showed specific localization and enrichment in aerial hyphae, conidiophores and conidia. We confirmed that loss of MoATG8 results in dramatically reduced ability to form conidia, the asexual spores that propagate riceblast disease. Exogenous supply of glucose or sucrose significantly suppressed the conidiation defects in a MoATG8-deletion mutant. Comparative proteomics-based identification and characterization of Gph1, a glycogen phosphorylase that catalyzes glycogen breakdown, indicated that autophagy-assisted glycogen homeostasis is likely important for proper aerial growth and conidiation in Magnaporthe. Loss of Gph1, or addition of G6P, significantly restored conidiation in the Moatg8Δ mutant. Overproduction of Gph1 led to reduced conidiation in wild-type Magnaporthe strain. We propose that glycogen autophagy actively responds to and regulates carbon utilization required for cell growth and differentiation during asexual development in Magnaporthe.
Trimethylamine N-oxide (TMAO), a gut microbe-derived metabolite of dietary choline and other trimethylamine-containing nutrients, has been linked to increased cardiovascular disease risk. It is unknown whether TMAO plays a role in the development of cardiac hypertrophy. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy in Sprague-Dawley (SD) rats. We observed that TMAO levels were significantly elevated in SD rats after 6 weeks of TAC, suggesting the potential role of TMAO in regulating cardiac hypertrophy. In cultured cardiomyocytes, TMAO treatment stimulated cardiac hypertrophy, as indicated by increased cell area of cardiomyocytes and expression of hypertrophic markers including atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). Additionally, TMAO treatment induced cardiac hypertrophy and cardiac fibrosis in SD rats. Reducing TMAO synthesis by antibiotics (Abs) attenuated TAC-induced cardiac hypertrophy and fibrosis. Furthermore, pharmacological inhibition of Smad3 by SIS3 significantly reduced the expression of ANP and β-MHC, and cardiomyocyte cell size in TMAO-treated group. These data for the first time demonstrate that gut microbe-derived metabolite TMAO induces cardiac hypertrophy and fibrosis involving Smad3 signaling, suggesting that inhibition of gut microbes or generation of TMAO may become a potential target for the prevention and treatment of cardiac hypertrophy.
Sporisorium scitamineum is the causal agent of sugarcane smut, which is one of the most serious constraints to global sugarcane production. S. scitamineum and Ustilago maydis are two closely related smut fungi, that are predicted to harbor similar sexual mating processes/system. To elucidate the molecular basis of sexual mating in S. scitamineum, we identified and deleted the ortholog of mating-specific U. maydis locus b, in S. scitamineum. The resultant b-deletion mutant was defective in mating and pathogenicity in S. scitamineum. Furthermore, a functional b locus heterodimer could trigger filamentous growth without mating in S. scitamineum, and functionally replace the b locus in U. maydis in terms of triggering aerial filament production and forming solopathogenic strains, which do not require sexual mating prior to pathogenicity on the host plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.