SummaryHow mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells—a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation.Video Abstract
The twenty-first century is bearing witness to a drastic change in population demographics and diseases of old age, such as dementia, are placing an unprecedented burden on the global healthcare system. Normal pressure hydrocephalus may be the only curable form of dementia, yet its pathophysiology is paradoxical and a consistent treatment currently remains elusive. A novel application of multiple-network poroelastic theory (MPET) is proposed to investigate water transport in the cerebral environment. Specifically, MPET is modified to allow a detailed investigation of spatio-temporal transport of fluid between the cerebral blood, cerebrospinal fluid (CSF) and brain parenchyma across scales. This framework thus allows an exploration of hypotheses defining the initiation and progression of both acute and chronic hydrocephalus. Results show that a breakdown in the transport mechanisms between the arterial vascular network and interstitial space within the parenchyma may be a cause of accumulation of CSF in the ventricles. Specifically, there must be an increase in the compliance of the arteriole/capillary network, which may combine with a breakdown in the blood–CSF barrier to allow an increased flow from the arteriole/capillary blood to the CSF. The results of this study should prove useful to guide experimental exploration in areas that warrant further investigation and validation.
Broad consensus emerged on the protective role against dementia of leisure activities. Conflicting results were found for the association between dementia and putative risk factors (smoking) and protective factors (mild-to-moderate alcohol consumption, dietary antioxidants, Mediterranean diet, and living with others). However, studies varied largely in the quantification of lifestyle factors in terms of intensity, frequency and duration of exposure, and in the choice of confounders in statistical analyses. The need for standardized quantification criteria emerges, together with the current limitation in reliably tracking the past history of each patient, from childhood and young adulthood to midlife.
We are investigating the fluid dynamics of high-speed (500 m/s) small size (200 μm in diameter) droplet impact on a rigid substrate. Utilizing a high-resolution axisymmetric solver for the Euler equations, we show that the compressibility of the liquid medium plays a dominant role in the evolution of the phenomenon. Compression of the liquid in a zone defined by a shock wave envelope, very high velocity lateral jetting, and expansion waves in the bulk of the medium are the most important mechanisms identified, simulated, and discussed. Comparisons of computationally obtained jetting inception times with analytic results show that agreement improves significantly if the radial motion of liquid in the compressed area is taken into account.
Blister-actuated laser-induced forward transfer (BA-LIFT) is a versatile printing technique in which fine jets of ink are ejected from a thin donor film onto an acceptor substrate, enabling high-resolution patterns to be formed. Fluid ejections are initiated by the rapid expansion of micrometre-sized blisters that form on a polymer film underneath the ink layer. Recent work has demonstrated that these ejections exhibit novel flow phenomena due to the unique dimensions and geometry of the BA-LIFT configuration. In this work, we study the dynamics of BA-LIFT printing using a computational model in which fluid is forced by a boundary that deforms according to experimental time-resolved measurements of an expanding blister profile. This allows the model's predictions to be unambiguously correlated with experimental blister-actuated ejections without any fitting parameters. First, we validate the model's predictive capabilities against experimental results, including the ability to accurately reproduce the size, shape and temporal evolution of the jet as well as the total volume of ink released. The validated model is then used to interrogate the flow dynamics in order to better understand the mechanisms for fluid ejection. Finally, parametric studies are conducted to investigate the influence of ink density, surface tension, viscosity and film thickness as well as the size of the blister used. These results provide key insights into avenues for optimization and better control of the BA-LIFT process for improved resolution and repeatability of the printed features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.