The engineering construction-related data is essential for evaluating and tracing project quality in industry 4.0. Specifically, the preservation of the information is of great significance to the safety of intelligent water projects. This paper proposes a blockchain-based data management model for intelligent water projects to achieve standardization management and long-term preservation of archives. Based on studying the concrete production process in water conservancy project construction, we first build a behavioral model and the corresponding role assignment strategy to describe the standardized production process. Then, a distributed blockchain data structure for storing the production-related files is designed according to the model and strategy. In addition, to provide trust repository and transfer on the construction data, an intelligent keyless signature based on edge computing is employed to manage the data’s entry, modification, and approval. Finally, standardized and secure information is uploaded onto the blockchain to supervise intelligent water project construction quality and safety effectively. The experiments showed that the proposed model reduced the time and labor cost when generating the production data and ensured the security and traceability of the electronic archiving of the documents. Blockchain and intelligent keyless signatures jointly provide new data sharing and trading methods in intelligent water systems.
In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.
This paper proposes a hybrid approach called XTS that uses a combination of techniques to analyze highly imbalanced data with minimum features. XTS combines cost-sensitive XGBoost, a game theory-based model explainer called TreeSHAP, and a newly developed algorithm known as Sequential Forward Evaluation algorithm (SFE). The general aim of XTS is to reduce the number of features required to learn a particular dataset. It assumes that low-dimensional representation of data can improve computational efficiency and model interpretability whilst retaining a strong prediction performance. The efficiency of XTS was tested on a public dataset, and the results showed that by reducing the number of features from 33 to less than five, the proposed model achieved over 99.9% prediction efficiency. XTS was also found to outperform other benchmarked models and existing proof-of-concept solutions in the literature. The dataset contained data related to DNS-over-HTTPS (DoH) tunnels. The top predictors for DoH classification and characterization were identified using interactive SHAP plots, which included destination IP, packet length mode, and source IP. XTS offered a promising approach to improve the efficiency of the detection and analysis of DoH tunnels while maintaining accuracy, which can have important implications for behavioral network intrusion detection systems.
National infrastructure is a material engineering facility that provides public services for social production and residents’ lives, and a large-scale complex device or system is used to ensure normal social and economic activities. Due to the problems of difficult data collection, long project period, complex data, poor security, difficult traceability and data intercommunication, the archives management of most national infrastructure is still in the pre-information era. To solve these problems, this paper proposes a trusted data storage architecture for national infrastructure based on blockchain. This consists of real-time collection of national infrastructure construction data through sensors and other Internet of Things devices, conversion of heterogeneous data source data into a unified format according to specific business flows, and timely storage of data in the blockchain to ensure data security and persistence. Knowledge extraction of data stored in the chain and the data of multiple regions or fields are jointly modeled through federal learning. The parameters and results are stored in the chain, and the information of each node is shared to solve the problem of data intercommunication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.