Foxg1, formerly BF-1, is expressed continuously in the postnatal and adult hippocampal dentate gyrus (DG). This transcription factor (TF) is thought to be involved in Rett syndrome, which is characterized by reduced hippocampus size, indicating its important role in hippocampal development. Due to the perinatal death of Foxg1 Ϫ/Ϫ mice, the function of Foxg1 in postnatal DG neurogenesis remains to be explored. Here, we describe the generation of a Foxg1 fl/fl mouse line. Foxg1 was conditionally ablated from the DG during prenatal and postnatal development by crossing this line with a Frizzled9-CreER TM line and inducing recombination with tamoxifen. In this study, we first show that disruption of Foxg1 results in the loss of the subgranular zone and a severely disrupted secondary radial glial scaffold, leading to the impaired migration of granule cells. Moreover, detailed analysis reveals that Foxg1 may be necessary for the maintenance of the DG progenitor pool and that the lack of Foxg1 promotes both gliogenesis and neurogenesis. We additionally show that Foxg1 may be required for the survival and maturation of postmitotic neurons and that Foxg1 may be involved in Reelin signaling in regulating postnatal DG development. Last, prenatal deletion of Foxg1 suggests that it is rarely involved in the migration of primordial granule cells. In summary, we report that Foxg1 is critical for DG formation, especially during early postnatal stage.
BackgroundThe rodent barrel cortex has been established as an ideal model for studying the development and plasticity of a neuronal circuit. The barrel cortex consists of barrel and septa columns, which receive various input signals through distinct pathways. The lemniscal pathway transmits whisker-specific signals to homologous barrel columns, and the paralemniscal pathway transmits multi-whisker signals to both barrel and septa columns. The integration of information from both lemniscal and paralemniscal pathways in the barrel cortex is critical for precise object recognition. As the main target of the posterior medial nucleus (POm) in the paralemniscal pathway, layer 5a (L5a) pyramidal neurons are involved in both barrel and septa circuits and are considered an important site of information integration. However, information on L5a neurons is very limited. This study aims to explore the cellular features of L5a neurons and to provide a morphological basis for studying their roles in the development of the paralemniscal pathway and in information integration.Results1. We found that the calcium-binding protein calretinin (CR) is dynamically expressed in L5a excitatory pyramidal neurons of the barrel cortex, and L5a neurons form a unique serrated pattern similar to the distributions of their presynaptic POm axon terminals.2. Infraorbital nerve transection disrupts this unique alignment, indicating that it is input dependent.3. The formation of the L5a neuronal alignment develops synchronously with barrels, which suggests that the lemniscal and paralemniscal pathways may interact with each other to regulate pattern formation and refinement in the barrel cortex.4. CR is specifically expressed in the paralemniscal pathway, and CR deletion disrupts the unique L5a neuronal pattern, which indicates that CR may be required for the development of the paralemniscal pathway.ConclusionsOur results demonstrate that L5a neurons form a unique, input-dependent serrated alignment during the development of cortical barrels and that CR may play an important role in the development of the paralemniscal pathway. Our data provide a morphological basis for studying the role of L5a pyramidal neurons in information integration within the lemniscal and paralemniscal pathways.
Edited by Paul E. FraserBurgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-D-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-D-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms.The first committed reaction in the metabolism of arachidonic acid to prostaglandins and thromboxanes is catalyzed by two related heme-containing bis-oxygenases, cyclooxygenase (COX) 1 and 2. These enzymes share 90% similarity in amino acid sequence and exhibit nearly identical enzyme kinetics (1, 2). Both catalyze two separate reactions, the first metabolizing arachidonic acid to PGG 2 3 (cyclooxygenase reaction), an intermediate that is subsequently reduced in the second reaction to the product, PGH 2 (peroxidase reaction). PGH 2 is the substrate for various synthases that generate individual biologically active prostaglandins and thromboxanes, often in a cell typespecific manner (3). Although both metabolize arachidonic acid to PGH 2 , the transcriptional regulation of each isoform differs. The PTGS1 gene encoding COX-1 lacks a TATA box motif in its 5Ј promoter region and is generally constitutively active in cells (4, 5). In contrast, the promoter regulatory region of the PTGS2 gene encoding COX-2 is not typically active but can be strongly and rapidly induced under specific...
Activity of neuronal cyclooxygenase-2 (COX-2), a primary source of PG synthesis in the normal brain, is enhanced by excitatory neurotransmission and this is thought to be involved in seizure suppression. Results herein showing that the incidence of pentylenetetrazole (PTZ)-induced convulsions is suppressed in transgenic mice overexpressing COX-2 in neurons support this notion. T-cell intracellular antigen-1 (TIA-1) is an mRNA binding protein that is known to bind to COX-2 mRNA and repress its translation in non-neuronal cell types. An examination of the expression profile of TIA-1 protein in the normal brain indicated that it is expressed broadly by neurons, including those that express COX-2. However, whether TIA-1 regulates COX-2 protein levels in neurons is not known. The purpose of this study was to test the possibility that deletion of TIA-1 increases basal COX-2 expression in neurons and consequently raises the seizure threshold. Results demonstrate that neither the basal nor seizure-induced expression profiles of COX-2 were altered in mice lacking a functional TIA-1 gene suggesting that TIA-1 does not contribute to regulation of COX-2 protein expression in neurons. The acute PTZ-induced seizure threshold was also unchanged in mice lacking TIA-1 protein, indicating that this RNA binding protein does not influence the innate seizure threshold. Nevertheless, the results raise the possibility that the level of neuronal COX-2 expression may be a determinant of the innate seizure threshold and suggest that a better understanding of the regulation of COX-2 expression in the brain could provide new insight into the molecular mechanisms that suppress seizure induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.