Crustal earthquakes in low-strain-rate regions are rare in the human life span but can generate disastrous consequences when they occur. Such was the case in the Canterbury earthquake sequence that began in 2010 and eventually led to almost 200 fatalities. Our study explores this earthquake sequence’s origins by producing an enhanced earthquake catalog in the Canterbury Plains and Otago, South Island, New Zealand. We investigate seismicity rate changes from 2005 to before the 2010 Mw 7.2 Darfield earthquake. During this time, major subduction-zone earthquakes, such as the 2009 Mw 7.8 Dusky Sound earthquake, created measurable coseismic and postseismic strain in the region. We use template matching to expand the catalog of earthquakes in the region, and use a support vector machine classifier to remove false positives and poor detections. We then compare the newly obtained seismicity rates with the coseismic and postseismic crustal strain fields, and find that seismicity rate and crustal strain are positively correlated in the low-stress, low-seismicity region of the northern Canterbury Plains. In contrast, near fast-moving plate-boundary faults, the seismicity rate changes rise without much change in the strain rate. Our analysis reveals a substantial seismicity rate decrease in the western rupture area of the Darfield earthquake, which we infer to be an effect of coseismic and postseismic deformation caused by the Dusky Sound earthquake. We show in low-strain-rate regions, stress perturbation of a few kPas creates substantial seismicity rate change. However, the implication that such seismic quiescence is responsible for the nucleation of the Darfield earthquake requires further studies.
<p>Crustal earthquakes in low deform rate regions are rare in the human life span but bear heavy losses when occurring. Limited observations also hinter robust earthquake forecasts. In this study, we use a high-resolution catalog to investigate the triggering of the 2010-2011 Canterbury earthquake sequence, New Zealand. The seismic sequence occurred in the North Canterbury Plains, a low-stress, low-seismicity region relatively close to active plate boundaries where large earthquakes are frequent, such as the 2009 M<sub>W</sub> 7.8 Dusky Sound Earthquake. To map the post-seismic stress transfers of remote large events acting in the region, we calculate the temporal and spatial seismic rate changes in the crust from 2005 to the 2010 Mw 7.1 Darfield Earthquake, the first mainshock of the Canterbury sequence. We use template matching analysis to obtain a new high-resolution seismic catalog that includes events previously undetected by routine network monitoring. Detection quality is further established through the usage of a Support Vector Machine classifier. Using the new catalog, we observe a seismic quiescence on the North Canterbury Plain between Dusky Sound Earthquake and the Darfield Earthquake. The quiescence is accompanied by a reduced rate in micro-seismicity, suggesting a lowered b-value in the region primed for the Canterbury sequence. The lack of proof of dynamic or static triggering suggests that complex fault interactions lead to the onset of the Darfield Earthquake.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.