Chemotherapy is the standard care for patients with gastric cancer (GC); however, resistance to existing drugs has limited its success. The persistence of cancer stem cells (CSCs) is considered to be responsible for treatment failure. In this study, we demonstrated that SIRT1 expression was significantly downregulated in GC tissues, and that a low SIRT1 expression level indicated a poor prognosis in GC patients. We observed a suppressive role of SIRT1 in chemoresistance of GC both in vitro and in vivo. In addition, we found that SIRT1 eliminated CSC properties of GC cells. Mechanistically, SIRT1 exerted inhibitory activities on chemoresistance and CSC properties through FOXO3 and AMPK. Furthermore, a synergistic effect was revealed between FOXO3 and AMPK. AMPK promoted nuclear translocation of FOXO3 and enhanced its transcriptional activities. In addition, FOXO3 increased the expression level and activation of AMPKα by directly binding to its promoter and activating the transcription of AMPKα. Similar to SIRT1, low expression levels of p-AMPKα and FOXO3a are also related to the poor prognosis of GC patients. Moreover, we revealed a correlation between the expression levels of SIRT1, p-AMPKα, and FOXO3a. These findings indicated the importance of the SIRT1-AMPK/FOXO3 pathway in reversing chemoresistance and CSC properties of GC. Thus, exploring efficient strategies to activate the SIRT1-AMPK/FOXO3 pathway may lead to improving the survival of GC patients.
Gastric cancer (GC) ranks among the top five malignant tumors worldwide by the incidence and mortality rate. However, the mechanisms underlying its progression are poorly understood. In this study, we investigated the role of SIRT1, a class III deacetylase, in the invasion and metastasis of GC. Here, we found that knockdown of SIRT1 promoted GC cell migration and invasion in vitro and metastasis in vivo. Forced expression of SIRT1 in GC cells had the opposite effects. Then, we used mRNA microarray to identify the target genes that are regulated by SIRT1 and found that ARHGAP5 was downregulated by SIRT1. The results of the mRNA microarray were confirmed in several GC cell lines. Furthermore, SIRT1 inhibited the expression of ARHGAP5 by physically associating with transcription factor c-JUN and deacetylating and inhibiting the transcriptional activity of c-JUN. Then the expression dynamics and clinical significance of ARHGAP5 were analyzed using clinical samples and database. The expression of ARHGAP5 was increased in GC, and positively correlated with tumor size, tumor infiltration, lymph node metastasis, and clinical stage. And multivariate analyses indicated that ARHGAP5 served as an independent prognostic marker of GC. In addition, the biological effects of ARHGAP5 in SIRT1-mediated inhibition of GC migration and invasion were investigated using both in vitro and in vivo models. Silencing of ARHGAP5 considerably inhibited the migration and invasion of GC, and ARHGAP5 was found to be involved in the SIRT1-mediated inhibition of GC migration and invasion. Our results indicate that SIRT1 suppresses migration and invasion of GC by downregulating ARHGAP5 through an interaction with c-JUN, and these phenomena represent a novel mechanism of the antitumor action of SIRT1.
Helicobacter pylori (H. pylori) is the strong risk factor for a series of gastric pathological changes. Persistent colonization of H. pylori leading to chronic infection is responsible for gastritis and malignancy. Autophagy is an evolutionary conserved process which can protect cells and organisms from bacterial infection. Here, we demonstrated that H. pylori infection induced autophagosome formation but inhibited autophagic flux. SIRT1, a class III histone deacetylase, was down‐regulated at both mRNA and protein levels by H. pylori infection in gastric cells. Further investigation showed that the transcriptional factor RUNX3 accounted for down‐regulation of SIRT1 in H. pylori‐infected gastric cells. SIRT1 promoted autophagic flux in gastric cells and activation of SIRT1 restored the autophagic flux inhibited by H. pylori infection. Furthermore, SIRT1 exerted inhibitory effects on intracellular survival and colonization of H. pylori. And activation of autophagic flux in SIRT1‐inhibited gastric cells could significantly reduce intracellular load of H. pylori. Moreover, the relationship between H. pylori infection and SIRT1 expression was identified in clinical specimen. Our findings define the importance of SIRT1 in compromised autophagy induced by H. pylori infection and bacterial intracellular colonization. These results provide evidence that SIRT1 can serve as a therapeutic target to eradicate H. pylori infection.
The environmental pollution cost is a measure of the extent of damage to the environment of land development projects. It should be an important part of corporate decision-making. Environmental pollution cost refers to economic losses caused by environmental pollution, including environmental degradation cost and pollution control cost. First, we use the market value method to establish the cost equations for water, energy and land environmental degradation. In addition, we use principal component analysis to select two main factors affecting environmental control cost: environmental pollution level and corporate environmental management level. We use the entropy weight method and the analytic hierarchy process to normalize the management level, and then establish an equation for accounting for the pollution control cost of the project. Enterprise environmental pollution cost accounting system is conducive to the enterprise to accurately calculate the environmental pollution cost of land development projects. Reasonable control of environmental pollution is conducive to the sustainable development of the economy and society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.