Similar to the popular older cousins, luminescent carbon dots (C-dots), graphene quantum dots or graphene quantum discs (GQDs) have generated enormous excitement because of their superiority in chemical inertness, biocompatibility and low toxicity. Besides, GQDs, consisting of a single atomic layer of nano-sized graphite, have the excellent performances of graphene, such as high surface area, large diameter and better surface grafting using π-π conjugation and surface groups. Because of the structure of graphene, GQDs have some other special physical properties. Therefore, studies on GQDs in aspects of chemistry, physical, materials, biology and interdisciplinary science have been in full flow in the past decade. In this Feature Article, recent developments in preparation of GQDs are discussed, focusing on the main two approaches (top-down and bottom-down). Emphasis is given to their future and potential development in bioimaging, electrochemical biosensors and catalysis, and specifically in photovoltaic devices that can solve increasingly serious energy problems.
A facile hydrazine hydrate reduction of graphene oxide (GO) with surface-passivated by a polyethylene glycol (PEG) method for the fabrication of graphene quantum dots (GQDs) with frequency upconverted emission is presented. And we speculate on the upconversion luminescence due to the anti-Stokes photoluminescence (ASPL), where the δE between the π and σ orbitals is near 1.1 eV.
Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.