Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk. Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs. non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism, FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes related to hormonal synthesis (CYP19A1, CYP11A1, HSD3B1 and RUNX2) were up-regulated after exosome treatment, while exosomes inhibited the expression of StAR. Moreover, estrous and non-estrous cow-milk-derived exosomes both could increase the expression of bcl2 and decrease the expression of p53, and did not influence the expression of caspase-3. To our knowledge, this is the first study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.
Microsatellite markers, also known as short tandem repeats (STRs), are important for marker-assisted selection to detect genetic polymorphism, and they are uniformly distributed in eukaryotic genomes. To analyze the relationship between microsatellite loci and lactation traits of Holstein cows in Xinjiang, 175 lactating cows with similar birth dates, the same parity, and similar calving dates were selected, and 10 STR loci closely linked to quantitative trait loci were used to analyze the correlation between each STR locus and 4 lactation traits (daily milk yield, milk fat percentage, milk protein percentage, and lactose percentage). All loci showed different degrees of genetic polymorphism. The average values of observed alleles, effective alleles, expected heterozygosity, observed heterozygosity, and polymorphic information content of the 10 STR loci were 10, 3.11, 0.62, 0.64, and 0.58, respectively. Chi-square and G-square tests showed that all populations of loci were in accordance with the Hardy–Weinberg equilibrium. Analysis of the correlation between STR locus genotype and lactation performance in the whole lactation period showed 3 loci (namely, BM143, BM415, and BP7) with no significant correlation with all lactation traits, 2 loci (BM302 and UWCA9) related to milk yield, 3 loci (BM103, BM302, and BM6425) related to milk fat percentage, 2 loci (BM302 and BM6425) related to milk protein percentage, and 3 loci (BM1443, BM302, and BMS1943) related to lactose percentage. The microsatellite loci selected in this study showed rich polymorphism in the experimental dairy cow population and were related to the lactation traits, which can be used for the evaluation of genetic resources and early breeding and improvement of Holstein dairy cows in Xinjiang.
Mid-infrared spectra (MIRS) can effectively reflect the chemical bonds in milk, which has been widely used in dairy herd improvement. However, the relationship between MIRS and animal evolution remains largely unclear. This study firstly found great differences in MIRS and the components of milk by analyzing MIRS information of 12 different mammal species. A five-level discriminant model of evolutionary level based on MIRS was established with a test set kappa coefficient >0.97. In addition, a regression model of genetic distance was also established to estimate the genetic distance of different animal species with a correlation coefficient of R >0.94. These results showed that this method could be used for accurate mammalian evolutionary relationship assessment. We further clarified the potential relationship between MIRS and genes, such as PPP3CA and SCD that could change MIRS by regulating specific milk components. In conclusion, we expand the application of MIRS in animal species identification and evolution research and provide new perspectives for the research on the formation mechanism of different animal milk special components.
Milk spectral data on 2118 cows from nine herds located in northern China were used to access the association of days open (DO). Meanwhile, the parity and calving season of dairy cows were also studied to characterize the difference in DO between groups of these two cow-level factors. The result of the linear mixed-effects model revealed that no significant differences were observed between the parity groups. However, a significant difference in DO exists between calving season groups. The interaction between parity and calving season presented that primiparous cows always exhibit lower DO among all calving season groups, and the variation in DO among parity groups was especially clearer in winter. Survival analysis revealed that the difference in DO between calving season groups might be caused by the different P/AI at the first TAI. In addition, the summer group had a higher chance of conception in the subsequent services than other groups, implying that the micro-environment featured by season played a critical role in P/AI. A weak linkage between DO and wavenumbers ranging in the mid-infrared region was detected. In summary, our study revealed that the calving season of dairy cows can be used to optimize the reproduction management. The potential application of mid-infrared spectroscopy in dairy cows needs to be further developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.